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The problem

We consider the mathematical model of the train moving along a segment of the track
of the length L between two stops. Let the distance along the track from the start be
denoted by x1. Furthermore, the track is characterized by the following features:

1. the slope s(x1), represented by the tangent of
the inclination angle at the point x1;

2. the curvature κ(x1) at a given point;

3. the friction coefficient µs , corresponding to
the static friction steel/steel;

4. the rolling friction coefficient µr , depending
on material (steel) and wheels radii.
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The problem

The train is characterized by:

1. the mass M;

2. the pulling force of the engine U(t),
represented by the function u(t) = U(t)/M;

3. the braking force B(t), represented by the
function b(t) = B(t)/M;

4. the aerodynamic parameters c1 and c2 corresponding
to the air resistance, standing at terms proportional to
velocity and its square respec- tively, already divided
by M;

5. the maximum power developed by the engine,
P0, represented by p0 = P0/M.
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The problem

The dynamics of the train is described by the following system of differential equations
(g - gravity acceleration):

ẋ1 = x2

ẋ2 = u(t)− b(t)− g(1 + κ1x
4
2 )µr − gs(x1)− c1x2 − c2x

2
2 .

Our goal is to find the energy-optimal controls u(t) and b(t) transferring the train
from standstill at x1 = 0 to standstill at x1 = L in a given time T , namely to minimize
the functional

V (u, b) =

T∫
0

u(t)x2(t)dt,

taking into account all additional conditions.
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The problem

In connection with this problem there arise the following partial tasks.

1 Given the noisy measurements of the elevation h(x) at the points along the
track, represent the function s(x) in a reasonable way.

2 Find the approximate controls.

3 Check, if the application of optimal controls is worthwhile, i.e. they really give
smaller energy consumption in comparison to a reasonably good heuristic
strategy.
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Approximation of the slope

We assume, that we have the set of elevation measurements

(xi , h(xi )), i = 1, . . . ,M, xi ∈ [0, L]

It seems, that the clever parametrization of the approximating function happ(x) could
use (for a given N), the following set of parameters z ∈ R2N−1:

z = [h0, s1, . . . , sN−1, d1, . . . , dN−1],

where h0 - initial value at x = 0, si - slope on i-th segment, di - length of the i-th
subinterval.
As a result, we have the following optimization problem:

M∑
j=1

(happ(z; xj )− h(xj ))
2 → min
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Approximation of the slope

The piecewise linear approximation of a elevation for N = 5 (left) and N = 6 (right)
and real measurements.
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Approximate solution

We have tested the reliability of the method on several examples of real tracks. In one
of such cases we had:

the total length L = 4223m divided by the slope approximation procedure into 4
subintervals L1 = 1200m, L2 = 1300m, L3 = 500m, L4 = 1223m;

the approximate slopes represented by s1 = 0.00110, δ1 = s2 − s1 = −0.0156,
δ2 = s3 − s2 = 0.0250 and δ3 = s4 − s3 = −0.0264;

train mass M = 1.06e5[kg ], rolling friction µr = 0.0015, static friction
µs = 0.0613, κ = c2 = 0, c1 = 0.1/M[1/s].

the admissible speed vad = 28[m/s], maximal power P0 = 1000[kW ];

the time of travel T = 240[s].

W. Radziszewska, K. Szulc, J. Verstraete Approximation of Energy-Optimal Train Control 8 / 14



The problem
Approximation of the slope
Approximate solution
Velocity reproduction

W. Radziszewska, K. Szulc, J. Verstraete Approximation of Energy-Optimal Train Control 9 / 14



The problem
Approximation of the slope
Approximate solution
Velocity reproduction

W. Radziszewska, K. Szulc, J. Verstraete Approximation of Energy-Optimal Train Control 10 / 14



The problem
Approximation of the slope
Approximate solution
Velocity reproduction

Velocity reproduction
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A word of caution

The approximation problem is strongly non-linear and non-convex. We should not
expect global minimum and it is advisable to run procedure for each N several times
with different (possibly random) starting points.
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Thank you for your attention
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