# On problems and methods of coordinated scheduling and location 

Jerzy Józefczyk, Mirosław Lawrynowicz, Grzegorz Filcek

> Wroclaw University of Science and Technology,
> Division of Intelligent Decision Support Systems
> Wroclaw, Poland

Agenda

Wrocław
University
of Science and Technology

1. Motivation
2. Scheduling sub-problem
3. Location sub-problem
4. Coordinated scheduling and location (ScheLoc)
5. Optimization schemes for ScheLoc
6. Selected results
7. Other cases and final remarks

## Motivation (1/2)

Applications:

- Loading/unloading of ships at an embankment
- Planning of evacuation from danger zones


Motivation (2/2)


## Scheduling sub-problem

Scheduling of jobs on parallel machines
$\mathrm{J}=\left\{J_{1}, J_{2}, \ldots, J_{j}, \ldots, J_{n}\right\}-$ set of $n$ jobs
$\mathrm{M}=\left\{M_{1}, M_{2}, \ldots, M_{i}, \ldots, M_{m}\right\}-$ set of $m$ machines
$\sigma \in \mathrm{D}_{\sigma}$ - schedule
$p=\left[p_{i j}\right]_{\substack{i=1, \underline{m} \\ j=1, n}}-$ processing times
$w=\left[w_{j}\right]_{j=1, n}-$ weights $\quad r=\left[r_{j}\right]_{j=\overline{1, n}}$ - release dates $\quad d=\left[d_{j}\right]_{j=\overline{1, n}}-$ due dates
$\mathrm{A}_{\mathrm{S}}=(p, d, w, r)-$ sequence of parameters
$\left[C_{j}\left(\sigma ; \mathrm{A}_{\mathrm{s}}\right)\right]_{j=\overline{1, n}}-$ completion times of jobs
$\bar{Q}_{\mathrm{S}}\left(\left[C_{j}\left(\sigma ; \mathrm{A}_{\mathrm{S}}\right)\right]_{j=1, n}\right) \square Q_{\mathrm{S}}\left(\sigma ; \mathrm{A}_{\mathrm{S}}\right)-$ job scheduling criteria

Sub-problem PS $\quad \min _{\sigma \in \mathrm{D}_{\sigma}} Q_{\mathrm{S}}\left(\sigma ; \mathrm{A}_{\mathrm{S}}\right)$

## Location sub-problem (1/2)

## Location of machines

$a=\left[a_{j}\right]_{j=\overline{1}, n}-$ given locations of jobs
$x=\left[x_{i}\right]_{i=\overline{1, m}}-$ sought locations of machines
$v=\left[v_{j}\right]_{j=\overline{1, n}}-$ speeds of job movements
$c=\left[c_{i j}\right]_{\substack{i=1, m \\ j=1, n}}$ - unit movement/transportation costs
$g=\left[g_{i}\right]_{i=\overline{1, m}}-$ unit location/investment costs
$\mathrm{A}_{\mathrm{L}}=(a, v, c, g)-$ sequence of parameters

Sub-problem PL $\min _{x \in \mathrm{D}_{x}} Q_{\mathrm{L}}\left(x ; \mathrm{A}_{\mathrm{L}}\right) \quad$ (mainly, location and/or movement costs)
where $\mathrm{D}_{x}$ represents available machines' positions taken from the discrete or continuous area

## Location sub-problem (2/2)

$r_{i j}\left(x_{i}\right)=\rho_{j}+v_{j}^{-1} d\left(a_{j}, x_{i}\right)-$ generalized release dates, where $d(\cdot)$ - distance

$$
\mathrm{D}_{\sigma} \rightarrow \mathrm{D}_{\sigma x} \quad Q_{\mathrm{S}}\left(\sigma ; \mathrm{A}_{\mathrm{s}}\right) \rightarrow Q_{\mathrm{SL}}\left(\sigma, x ; \mathrm{A}_{\mathrm{s}}\right)
$$

$\alpha|\beta| \gamma \mid \delta$ - extended Graham's notation

$$
\beta: r_{j-} \mathrm{V}, \quad r_{j}^{-} \leq r_{j} \leq r_{j}^{+}
$$

$\delta:-$ UFLP

- UFLP_T
(full UFLP)
(UFLP with the restriction to a transportation cost)
- UFLP_I (UFLP with the limitation to an investment cost)
- P_MEDIAN ( $p$-median problem)
- CFLP
(facility location with continuous location area)


## Coordinated scheduling and location/ScheLoc/ (1/2)

Table 1. The track record on coordinated scheduling-location

| $1\left\|r_{j}-\mathrm{V}\right\| C_{\text {max }} \mid$ UFLP_T | Hennes and Hamacher (2002) |
| :---: | :---: |
| $1\left\|r_{j}-\mathrm{V}\right\| C_{\text {max }} \mid$ CFLP | Elvikis et al. (2009), Kalsch and Drezner (2010) |
| 1\| $p_{j}=p, r_{j-} \mathrm{V}\left\|C_{\text {max }}\right\|$ CFLP | Kalsch and Drezner (2010) |
| $\mathrm{P}\left\|r_{j}-\mathrm{V}\right\| C_{\text {max }}$ | Rajabzadeh et al. (2016) |
| $\mathrm{P}\left\|r_{j}{ }^{-} \mathrm{V}\right\| C_{\text {max }} \mid$ UFLP_T | Hessler and Deghdak (2017) |
| $\mathrm{P}\left\|r_{j}{ }^{-} \mathrm{V}\right\| \sum C_{j} \mid \mathrm{CFLP}$ | Piasecki (2018), Piasecki and Józefczyk (2018) |
| $\mathrm{R}\left\|r_{j}+\mathrm{V}\right\| C_{\text {max }} \mid \mathrm{P}_{-} \mathrm{MEDIAN}$ | Ławrynowicz and Józefczyk (2019) |
| $\mathrm{R}\left\|r_{j}-\mathrm{V}\right\| C_{\text {max }}$ | Ławrynowicz and Józefczyk (2019) |
| $\mathrm{P}\left\|r_{j}-\mathrm{V}\right\| \sum C_{j} \mid$ UFLP_I | Filcek et al. (2020) |

## Coordinated scheduling and location/ScheLoc/ (2/2)

1. Hennes H., Hamacher H. Integrated Scheduling and Location Models: Single Machine Makespan Problems. Report in Wirtschaftsmathematik 82, Univ. of Kaiserslautern, 2002
2. Elvikis D., Hamacher H. W., Kalsch M. T. Simultaneous scheduling and location (ScheLoc): The planar ScheLoc makespan problem. Journal of Scheduling 12 (4), 2009, 361-374
3. Kalsch M. T., Drezner Z. Solving scheduling and location problem in the plane simultaneously. Computers \& Operations Res. 37(2), 2010, 256-264.
4. Rajabzadeh M., Ziaee M., Bozorgi-Amiri A. Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem. International Journal of Industrial Engineering Computations 7(4), 2016
5. Hessler, C.J., Deghdak, K. (2017) Discrete parallel machine makespan ScheLoc problem, Journal of Combinatorial Optimization, 34(4), 1159-1186.
6. Piasecki B., Józefczyk J. (2018) Evolutionary algorithm for joint task scheduling and deployment of executors, In: Automation of Discrete Processes. Theory and Applications (in Polish), Silesian University of Technology, 1, 169-178.
7. Liu M., Liu X., Zhang E., Chu F., Chu Ch. (2019) Scenario-based heuristic to two-stage stochastic program for the parallel machine ScheLoc problem, International Journal of Production Research, 57(6),1706-1723.
8. Ławrynowicz M., Józefczyk J (2019) A memetic algorithm for the discrete schedulinglocation problem with unrelated executors; Proc. of $24^{\text {th }}$ Int. Conf. on Models and Methods in Automation and Robotics MMAR, Międzyzdroje, Poland, August 26-29 (in press).


Fig. 1 Decision-making system

## Decision-making problem

Given:

- model of a decision-making plant
- requirement for a result of a decision (evaluation of a decision)

Determine:

- decision fulfilling a requirement


## Optimization schemes for ScheLoc: /S_Seq/ (2/9)



Fig. 2 Sequential approach for solving ScheLoc /S_Seq/

## Optimization schemes for ScheLoc: /S_Seq/ (3/9)

## Sequential optimization scheme S_Seq

Require: $\mathrm{J}, \mathrm{M}, \mathrm{A}_{\mathrm{S}}, \mathrm{A}_{\mathrm{L}}, \mathrm{D}_{\sigma x}, \mathrm{D}_{x}$
Ensure: $\tilde{x}, \tilde{\sigma}, \tilde{Q}_{\mathrm{L}} \square Q_{\mathrm{L}}\left(\tilde{x} ; \mathrm{A}_{\mathrm{L}}\right), \tilde{Q}_{\mathrm{SL}} \square Q_{\mathrm{SL}}\left(\tilde{\sigma}, \tilde{x} ; \mathrm{A}_{\mathrm{S}}\right)$,

1. Solve the locational problem $\min _{x \in \mathrm{D}_{x}} Q_{\mathrm{L}}\left(x ; \mathrm{A}_{\mathrm{L}}\right)$ to obtain $\tilde{x}$ and $\tilde{Q}_{\mathrm{L}}$.
2. Calculate $r_{i j}=\rho_{j}+v_{j}^{-1} d\left(a_{j}, \tilde{x}_{i}\right), i=\overline{1, m}, j=\overline{1, n}$.
3. Set the release dates of jobs using the selected operator $\Phi$ to have $r_{j}=\Phi\left(r_{1 j}, \ldots, r_{m j}\right)$.
4. Solve the job scheduling problem with different release dates $r_{j} \min _{\sigma \in \mathrm{D}_{\sigma r}} Q_{\mathrm{SL}}\left(\sigma, \tilde{x} ; \mathrm{A}_{\mathrm{s}}\right)$ to determine $\tilde{\sigma}$ and $\tilde{Q}_{\mathrm{SL}}$.

## Optimization schemes for ScheLoc: /S_Jnt/ (4/9)



Fig. 3 Joint approach for solving Schec with an only criterion $Q_{\text {SL }} \quad /$ S_Jnt/

## Optimization schemes for ScheLoc: /S_Jnt/ (5/9)

## Joint optimization scheme S_Jnt

Require: $\mathrm{J}, \mathrm{M}, \mathrm{A}_{\mathrm{S}}, \mathrm{A}_{\mathrm{L}}$, D
Ensure: $\hat{\sigma}, \hat{x}, \hat{Q}_{\mathrm{SL}} \square Q_{\mathrm{SL}}\left(\hat{\sigma}, \hat{x} ; \mathrm{A}_{\mathrm{s}}\right)$

1. Solve the joint scheduling-location problem $\min _{(\sigma, x) \in \mathrm{D}} Q_{\mathrm{SL}}\left(\sigma, x ; \mathrm{A}_{\mathrm{s}}\right)$ to obtain $\hat{\sigma}, \hat{x}$, and $\hat{Q}_{\mathrm{SL}}$.

## Optimization schemes for ScheLoc: /S_Jnt_B/ (6/9)



Fig. 4 Bi-criteria joint approach for solving ScheLoc /S_Jnt_B/

## Optimization schemes for ScheLoc: /S_Jnt_B/ (7/9)

Joint bi-criteria optimization scheme S_Jnt_B
Require: J, M, $\mathrm{A}_{\mathrm{s}}, \mathrm{A}_{\mathrm{L}}$, D
Ensure: Set of $\lambda$ pairs of decisions $\operatorname{Arg}_{\text {PF }}=\left\{\left(\sigma_{l}^{*}, x_{l}^{*}\right): l=\overline{1, \lambda}\right\}$ and corresponding Pareto front $\mathrm{PF}=\left(Q_{l}^{*} \square\left[Q_{\mathrm{SL}, l}^{*}, Q_{\mathrm{L}, l}^{*}\right]^{\mathrm{T}}: Q_{\mathrm{S}, l-1}^{*}<Q_{\mathrm{SL}, l}^{*}, l=\overline{2, \lambda}\right)$.

1. Solve the joint scheduling-location problem $\min _{(\sigma, x) \in \mathrm{D}}\left[\begin{array}{c}Q_{\mathrm{SL}}\left(\sigma, x ; \mathrm{A}_{\mathrm{S}}\right) \\ Q_{\mathrm{L}}\left(x ; \mathrm{A}_{\mathrm{L}}\right)\end{array}\right]$ to have $\operatorname{Arg}_{\mathrm{PF}}$ and PF.

## Optimization schemes for ScheLoc: /S_Unc/ (8/9)



Fig. 5 Uncertain approach for solving ScheLoc - addressing as an uncertain version of PS /S_Unc/

## Optimization schemes for ScheLoc: /S_Unc/ <br> (9/9)

Uncertain optimization scheme S_Unc
Require: J, M, $\mathrm{A}_{\mathrm{s}}$, $\mathrm{D}_{\sigma}$, R
Ensure: $\sigma^{\prime \prime}, r^{\sigma}, z\left(\sigma^{\prime \prime}\right), Q_{\mathrm{s}}\left(\sigma^{\prime \prime}, r^{\sigma}\right) \square Q_{\mathrm{s}}^{\prime \prime}$

1. Solve $\min _{\pi \in \mathrm{D}_{\pi}} \hat{Q}_{\mathrm{S}}(\pi, r)$ to have $Q_{\mathrm{S}}^{\prime}(r)$.
2. Obtain the worst-case scenario as $r^{\sigma}=\arg \max _{r \in \mathrm{R}}\left[\hat{Q}_{\mathrm{S}}(\sigma, r)-Q_{\mathrm{S}}^{\prime}(r)\right]$ and calculate $z(\sigma)=\hat{Q}_{\mathrm{S}}\left(\sigma, r^{\sigma}\right)-Q_{\mathrm{S}}^{\prime}\left(r^{\sigma}\right)$.
3. Solve $\min _{\sigma \in \mathrm{D}_{\sigma}} z(\sigma)$ to obtain $\sigma^{\prime \prime}, z\left(\sigma^{\prime \prime}\right)$, and $Q_{\mathrm{S}}^{\prime \prime}$.

## Selected results: Case $\mathrm{P}\left|r_{j_{-}} \mathrm{V}\right| \Sigma C_{j} \mid$ UFLP_I

Filcek G., Józefczyk J., Ławrynowicz M. (2020) An evolutionary algorithm for joint bi-criteria location-scheduling problem. International Journal of Industrial Engineering Computations (accepted)
discrete locations, the Euclidean distances
$\mu$ locations ready for deploying $m$ machines
SGB $\mathrm{A}_{\mathrm{L}}=(a, v, g)$
$Q_{\mathrm{SL}}\left(\sigma, x ; \mathrm{A}_{\mathrm{S}}\right) \rightarrow \quad Q_{\mathrm{SL}}\left(s, x ; \mathrm{A}_{\mathrm{S}}\right)=\sum_{i=1}^{\mu} \sum_{k=1}^{n} x_{i} C_{i k}(s, x)$
s.t.

$$
\begin{gathered}
1 \leq \sum_{i=1}^{\mu} x_{i} \leq \mu, \\
\sum_{i=1}^{\mu} \sum_{k=1}^{n} s_{j i k}=1, j=1,2, \ldots, n, \\
\sum_{j=1}^{n} s_{j i k} \leq x_{i}, i=1,2, \ldots, \mu, k=1,2, \ldots, n, \\
C_{i k}(s, x) \geq \sum_{j=1}^{n}\left(r_{j}+p_{j}\right) s_{j i k}, i=1,2, \ldots, \mu, k=1,2, \ldots, n, \\
C_{i k}(s, x) \geq C_{i, k-1}(s, x)+\sum_{j=1}^{n} p_{j} s_{j i k}, i=1,2, \ldots, \mu, k=2,3, \ldots, n
\end{gathered}
$$

## Selected results: Case $\mathrm{P}\left|r_{j_{-}} \mathrm{V}\right| \Sigma C_{j} \mid$ UFLP_I

## Algorithm ALG BC

Require: Data of BC_ScheLoc: $J, B, A, \mu, p_{j}, \rho_{j}, v_{j}, c_{i}$, and parameters of the algorithm: $\varphi_{m}$, $\varphi_{c}, \alpha_{i}, \bar{\alpha}, \tilde{\alpha}, \Gamma, \Gamma_{\max }$.
Ensure: Set of non-dominated solutions $S_{\mathrm{PF}}$ and the Pareto front PF.
$1: i:=1, z:=1, \tilde{z}:=1, S_{M}(i z):=\varnothing$
2 : while $i \leq \mu$ do

3: Generate the initial population $S_{i}$ of $\alpha_{i}$ solutions for exactly $i$ executors and set $\overline{S_{i}}(0):=\varnothing$

4: $\quad$ while $i z<\Gamma_{\max }$ or $\tilde{z}<\Gamma$ do
Perform a non-dominated sorting and crowding-distance assignment.
Use a crowded comparison operator for a selection.
Generate the set $\bar{S}_{i}(z)$ of offsprings using the crossover (CPC-2/OX2) and mutation (SIM/SM) operators.
for each $l$ th element in $\bar{S}_{i}(z)$ that is non-dominated by any element in $S_{M}(i z)$ do

$$
S_{M}(i z):=S_{M}(i z) \cup \bar{E}_{i l}(z)
$$

end for
11: $\quad \quad$ if $\left|\bar{S}_{i}(z)\right|=\left|\bar{S}_{i}(z-1)\right|$ then $\tilde{z}:=\tilde{z}+1 \quad$ else $\tilde{z}:=1$ end if

13: $\quad$ if $\Gamma_{\text {max }} \bmod z=0$ or $\tilde{z}:=\Gamma$ then set $i:=i+1, z:=1$ and go to 2 , end if
16: end while
17: $\quad \operatorname{Set} z:=z:=z+1$.
18: end while
19: return $S_{P F}=\left\{\left(x_{\mathrm{PF}, 1}=f_{x}\left(E_{L, l}\right), y_{\mathrm{PF}, 1}=f_{y}\left(E_{L u}\right)\right), l=1,2, \ldots, L(i z)\right\}$

$$
\text { and } P F=\left(\left(q^{(1)}\left(x_{\mathrm{PF}, 1}, y_{\mathrm{PF}, 1}\right), q^{(2)}\left(y_{\mathrm{PF}, 1}\right)\right) \square\left(q_{l}^{(1)}, q_{l}^{(2)}\right): q_{l-1}^{(1)}<q_{l}^{(1)}, l=1,2, \ldots, L(i z)\right)
$$

Selected results: Case $\mathrm{P}\left|r_{j-} \mathrm{V}\right| \Sigma C_{j} \mid$ UFLP_I

Table 2 Dependence of $Q_{\mathrm{SL}, \mathrm{d}}, Q_{\mathrm{L}, \mathrm{d}}$ and Dist on $n$ and $\mu$ for both algorithms

| $(n, \mu)$ | $Q_{\mathrm{SL}, l}^{*}$ | $Q_{\mathrm{L}, l}^{*}$ | $Q_{\mathrm{SL}, l}^{\mathrm{NS}}$ | $Q_{\mathrm{L}, l}^{\mathrm{NS}}$ | Dist $^{*}$ | Dist $^{\mathrm{NS}}$ | Dist $^{\mathrm{NS}} /$ Dist $^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(10,4)$ | 266.776 | 182 | $\mathbf{2 6 6 . 7 7 6}$ | $\mathbf{1 8 2}$ | 322.945 | $\mathbf{3 2 2 . 9 4 5}$ | 1.000 |
| $(15,4)$ | 432.052 | 285 | $\mathbf{4 3 2 . 0 5 2}$ | $\mathbf{2 8 5}$ | 517.584 | $\mathbf{5 1 7 . 5 8 4}$ | 1.000 |
| $(20,4)$ | 596.663 | 385 | 624.574 | $\mathbf{3 8 5}$ | 710.093 | 733.701 | 1.033 |
| $(25,4)$ | 866.800 | 385 | 956.164 | $\mathbf{3 8 5}$ | 948.455 | 1030.765 | 1.087 |
| $(10,6)$ | 265.559 | 177 | $\mathbf{2 6 5 . 5 5 9}$ | $\mathbf{1 7 7}$ | 319.140 | $\mathbf{3 1 9 . 1 4 0}$ | 1.000 |
| $(15,6)$ | 406.760 | 257 | 448.850 | $\mathbf{2 5 7}$ | 481.147 | 517.218 | 1.075 |
| $(20,6)$ | 458.741 | 406 | 477.497 | 452 | 612.600 | 725.684 | 1.185 |
| $(25,6)$ | 611.681 | 452 | 716.951 | 536 | 760.564 | 911.585 | 1.199 |

Dist - distance between $(0,0)$ and Pareto front $/\left(Q_{\mathrm{SL}, l}, Q_{\mathrm{L}, l}\right) /$
NS - NSGS II-based algorithm

Selected results: Case $\mathrm{P}\left|r_{j-} \mathrm{V}\right| \Sigma C_{j} \mid$ UFLP_I

$$
\mu=4
$$

$$
\mu=6
$$

$$
\mu=8
$$



## Selected results: Cases $\mathrm{R}\left|r_{j-} V\right| C_{\text {max }} \mid \mathrm{P}_{-}$MEDIAN and $\mathrm{R}\left|r_{j_{-}} V\right| C_{\max } \quad(1 / 5)$

Ławrynowicz M. and Józefczyk J (2019) A memetic algorithm for the discrete schedulinglocation problem with unrelated executors; Proc. of $24^{\text {th }}$ Int. Conf. on Models and Methods in Automation and Robotics MMAR. Międzyzdroje. Poland, August, 26-29.
$\mathrm{R}\left|r_{j_{-}} V\right| C_{\text {max }} \mid \mathrm{P}_{-}$MEDIAN $\rightarrow$ Scheme $\mathrm{S}_{-}$Seq discrete locations, the Euclidean distances
$\mu$ locations ready for deploying $m$ machines
$\mathrm{A}_{\mathrm{L}}=(a, v)$

Sub-problem PL (p-median problem)

$Q_{\mathrm{L}}\left(x ; \mathrm{A}_{\mathrm{L}}\right)=\sum_{i=1}^{\mu} \min _{x \in \mathrm{D}_{x}} r_{i j} \quad r_{i j}\left(x_{i}\right)=\rho_{j}+v_{j}^{-1} d\left(a_{j}, x_{i}\right)$

Rosing, K. E., Revelle, C. S., \& Schilling, D. A. (1999) A gamma heuristic for the p-median problem. European Journal of Operational Research, 117, 3, 522-532.

## Selected results: Cases $\mathrm{R}\left|r_{j_{-}} V\right| C_{\text {max }} \mid \mathrm{P}_{-}$MEDIAN and $\mathrm{R}\left|r_{j_{-}} V\right| C_{\text {max }} \quad(2 / 5)$

## Sub-problem PS

$\mathrm{A}_{\mathrm{S}}=(p, r)$

$$
\begin{aligned}
& Q_{\mathrm{SL}}\left(\sigma, x ; \mathrm{A}_{\mathrm{S}}\right)=\max _{1 \leq i \leq m} C_{\sigma_{i}^{n_{i}}}\left(x_{i}\right) \\
& \quad \sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{i}, \ldots, \sigma_{m}\right\} \\
& \quad \sigma_{i}=\left(\sigma_{i}^{1}, \sigma_{i}^{2}, \ldots, \sigma_{i}^{l}, \ldots, \sigma_{i}^{n_{i}}\right) \\
& \mathrm{D}_{\sigma x}=\left\{\sigma: \sigma_{i_{1}}^{l_{1}} \neq \sigma_{i_{2}}^{l_{2}}, \sum_{i=1}^{m} n_{i}=n\right\}
\end{aligned}
$$



PSO-based solution algorithm
Lin, Y. K. (2013). Particle swarm optimization algorithm for unrelated parallel machine scheduling with release dates. Mathematical Problems in Engineering, Article ID 409486.

Selected results: Cases $\mathrm{R}\left|r_{j_{-}} V\right| C_{\text {max }} \mid \mathrm{P}_{-}$MEDIAN and $\mathrm{R}\left|r_{j_{-}} V\right| C_{\max } \quad(3 / 5)$
$\mathrm{R}\left|r_{j}{ }^{-} V\right| C_{\max } \rightarrow$ Scheme $\mathrm{S}_{-}$Jnt


## Algorithm TSMA. Tabu Search based Memetic algorithm

Require: Data: $D=\{\mathrm{M}, \mathrm{Y}, \tilde{\mathrm{Y}}, \mathrm{J}, \mathrm{S}, \mathrm{V}, p\}$ and parameters of the algorithm: $\alpha_{\mathrm{init}}, \alpha_{\mathrm{par}}, \varphi_{m}, \varphi_{r}, \Gamma, \Gamma_{\max }, \rho, \tilde{\rho}$,
$\kappa^{\text {bin }}, \kappa^{\text {integer }}$
Ensure: Heuristic solution $X$ and $\Pi$ as well as $C_{\max }^{\text {TSMA }}$.

1. Generate the initial population $\tilde{\mathbf{E}}(z)$ for $z:=1$ and set $\mathbf{E}^{*}:=\mathbf{E}^{\text {best }}(z)$.
2. while stop condition defined by $\left(\Gamma, \Gamma_{\max }, \mathbf{E}^{*}\right)$ is not satisfied
3. Evaluate $\tilde{\omega}(z)$ by population $\tilde{\mathbf{E}}(z)$.
4. Select parents $\tilde{\mathbf{E}}^{\text {sus }}(z)$ with the use of Stochastic Universal Sampling.
5. Generate the set $\tilde{\mathbf{E}}^{\text {off }}(z)$ of offsprings using the recombination (CPC-2/OX1) and mutation operators.
6. Run the Local Search Heuristic with arguments: $\tilde{\omega}^{\text {off }}(z), D$ and return $\tilde{\mathbf{E}}^{\text {TS }}$.
7. if $C_{\text {max }}\left(\mathbf{E}^{*}\right)>C_{\text {max }}\left(\mathbf{E}^{\mathrm{TS} \text { best }}\right)$ then $\mathbf{E}^{*}:=\mathbf{E}^{\mathrm{TS} \text { best }}$ end if
8. Set $z:=z+1$ and $\tilde{\mathbf{E}}(z):=\tilde{\mathbf{E}}^{\mathrm{TS}} \cup \tilde{\mathbf{E}}^{\text {off } \text { best }}(z)$.
9. end while (2)
10. $X:=f_{X}\left(\mathbf{E}^{*} ; \mathrm{Y}\right), \Pi:=f_{\Pi}\left(\mathbf{E}^{*}\right), C_{\max }^{\mathrm{TSMA}}:=C_{\max }(\Pi, X)$

Selected results: Cases $\mathrm{R}\left|r_{j_{-}} V\right| C_{\text {max }} \mid \mathrm{P}_{-}$MEDIAN and $\mathrm{R}\left|r_{j_{-}} V\right| C_{\text {max }} \quad(4 / 5)$

Table 3 Dependence of $Q_{\text {SL }}$ and $t$ on $n$ for joint and sequential approaches

| $n$ | $\hat{Q}_{\mathrm{SL}}$ | $\tilde{Q}_{\mathrm{SL}}$ | $\delta_{Q}$ | $\hat{t}_{\mathrm{SL}}[s]$ | $\tilde{t}_{\mathrm{SL}}[s]$ | $\delta_{t}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 39.764 | 52.780 | 32.733 | 9.221 | 7.035 | -23.707 |
| 200 | 71.551 | 100.954 | 41.094 | 16.934 | 14.697 | -13.210 |
| 300 | 146.625 | 188.781 | 28.751 | 25.755 | 26.968 | 4.710 |
| 400 | 235.912 | 297.873 | 26.264 | 34.777 | 36.089 | 3.773 |
| 500 | 300.651 | 369.762 | 22.987 | 41.048 | 47.114 | 14.778 |
| 600 | 348.684 | 462.543 | 32.654 | 49.912 | 58.281 | 16.768 |
| 700 | 405.646 | 527.986 | 30.159 | 58.995 | 72.092 | 22.200 |
| 800 | 489.871 | 659.451 | 34.617 | 67.665 | 83.668 | 23.650 |
| 900 | 579.543 | 778.992 | 34.415 | 80.019 | 99.769 | 24.682 |
| 1000 | 645.671 | 868.621 | 34.530 | 88.894 | 117.249 | 31.898 |

$\hat{Q}_{\mathrm{SL}}, \hat{t}_{\mathrm{SL}}-S_{-} \mathrm{Jnt}$
$\tilde{Q}_{\mathrm{SL}}, \tilde{t}_{\mathrm{SL}}-S_{-} \mathrm{Seq}$
$\delta_{Q}=\frac{\tilde{Q}_{\mathrm{SL}}-\hat{Q}_{\mathrm{SL}}}{\hat{Q}_{\mathrm{SL}}} 100 \% \quad \delta_{t}=\frac{\tilde{t}_{\mathrm{SL}}-\hat{t}_{\mathrm{SL}}}{\hat{t}_{\mathrm{SL}}} 100 \%$

## Selected results: Cases $\mathrm{R}\left|r_{j_{-}} V\right| C_{\max } \mid \mathrm{P}_{-}$MEDIAN and $\mathrm{R}\left|r_{j_{-}} V\right| C_{\max } \quad(5 / 5)$

Property. The optimization scheme S_Seq does not outperform the optimization scheme $\mathrm{S} \_$Jnt, i.e., $Q_{\mathrm{SL}}\left(\tilde{\sigma}, \tilde{x} ; \mathrm{A}_{\mathrm{S}}\right) \geq Q_{\mathrm{SL}}\left(\hat{\sigma}, \hat{x} ; \mathrm{A}_{\mathrm{S}}\right)$

Justification:
$Q_{\mathrm{SL}}\left(\hat{\sigma}, \hat{x} ; \mathrm{A}_{\mathrm{s}}\right)=\min _{(\sigma, x) \in \mathrm{D}} Q_{\mathrm{SL}}\left(\sigma, x ; \mathrm{A}_{\mathrm{s}}\right) \leq \min _{(\sigma, x) \in \mathrm{D}^{\prime}} Q_{\mathrm{SL}}\left(\sigma, x ; \mathrm{A}_{\mathrm{S}}\right)=\min _{\sigma \in \mathrm{D}_{\sigma \tilde{x}}} Q_{\mathrm{SL}}\left(\sigma, \tilde{x} ; \mathrm{A}_{\mathrm{s}}\right)=Q_{\mathrm{SL}}\left(\tilde{\sigma}, \tilde{x} ; \mathrm{A}_{\mathrm{s}}\right)$,
where $\tilde{x}=\arg \min _{x \in \mathrm{D}_{x}} Q_{\mathrm{L}}\left(x ; \mathrm{A}_{\mathrm{L}}\right), \mathrm{D}^{\prime}=\left\{(\sigma, x): \sigma \in \mathrm{D}_{\sigma \tilde{x}} \wedge \tilde{x}=\arg \min _{x \in \mathrm{D}_{x}} Q_{L}\left(x ; \mathrm{A}_{\mathrm{L}}\right)\right.$, and $\mathrm{D}^{\prime} \subseteq \mathrm{D}$.

Release dates belong to given intervals, i.e., $r_{j} \in\left[r_{j}^{-}, r_{j}^{+}\right]$.
How to determine intervals?
$\hat{Q}_{\mathrm{S}}(\sigma, r) \square C_{n}(\sigma, r)$
where $C_{k}(\sigma, r)=p_{\sigma(k)}+\max \left\{C_{k-1}(\sigma, r), r_{\sigma(k)}\right\}, \quad k=2,3, \ldots, n, C_{0}(\sigma, r)=0$
$\hat{Q}_{\mathrm{S}}(\sigma, r)-Q_{\mathrm{S}}^{\prime}\left(\sigma_{r}^{\prime}\right)-$ regret
where $\sigma^{\prime}=\arg \min _{\pi \in \mathrm{D}_{\pi}} Q(\pi, r)-$ optimal solution for fixed scenario $r$
$\mathrm{D}_{\pi}-$ set of permutations without repetitions
$Q_{\mathrm{S}}^{\prime} \square \min _{\pi \in \mathrm{D}_{\pi}} Q(\pi, r)$
$z(\sigma)=\max _{r \in \mathrm{R}}\left[\hat{Q}_{\mathrm{S}}(\sigma, r)-Q_{\mathrm{S}}^{\prime}\left(\sigma_{r}^{\prime}\right)\right]$ - maximum regret for given $\sigma$
$r^{\sigma}=\arg \max _{r \in \mathrm{R}}\left[\hat{Q}_{\mathrm{S}}(\sigma, r)-Q_{\mathrm{S}}^{\prime}(r)\right]-$ worst-case scenario

$$
\min _{\sigma \in \mathrm{D}_{\sigma}} z(\sigma) \quad \sigma^{\prime \prime}=\arg \min _{\sigma \in \mathrm{D}_{\sigma}} z(\sigma)-\text { solution }
$$

Selected results: Uncertain case $1\left|r_{j}^{-} \leq r_{j} \leq r_{j}^{+}\right| C_{\max } \quad$ (2/2)
Table 4 Dependence of makespan and computational time on $n$ for S_Jnt and S_Unc, $\mu=50$

| $n$ | any intervals |  |  |  |  | disjoint intervals |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\hat{Q}_{\mathrm{SL}}$ | $Q_{\mathrm{S}}\left(\sigma^{\prime \prime}\right)$ | $\hat{t}_{\mathrm{SL}}$ <br> $[m s]$ | $t_{\mathrm{S}}$ <br> $[\mathrm{ms}]$ | $\hat{Q}_{\mathrm{SL}}$ | $Q_{\mathrm{S}}\left(\sigma^{\prime \prime}\right)$ | $\hat{t}_{\mathrm{SL}}[\mathrm{ms}]$ | $t_{\mathrm{S}}[\mathrm{ms}]$ |  |
|  | 2741.530 | 2776.632 | 8 | 39 | $\mathbf{5 5 6 . 5 5}$ | $\mathbf{5 5 6 . 5 5}$ | 11 | 9 |  |
| 80 | 5719.114 | 5747.075 | 10 | 296 | $\mathbf{7 0 9 . 3 3}$ | $\mathbf{7 0 9 . 3 3}$ | 16 | 12 |  |
| 120 | 8737.921 | 8785.887 | 26 | 1241 | $\mathbf{8 1 1 . 9 1}$ | $\mathbf{8 1 1 . 9 1}$ | 29 | 22 |  |
| 160 | 11505.807 | 11533.889 | 29 | 4410 | $\mathbf{9 8 7 . 3 8}$ | $\mathbf{9 8 7 . 3 8}$ | 39 | 27 |  |
| 200 | 14482.500 | 14503.128 | 31 | 6712 | $\mathbf{1 1 0 8 . 9 9}$ | $\mathbf{1 1 0 8 . 9 9}$ | 55 | 40 |  |
| 240 | 17534.556 | 17557.584 | 47 | 12744 | $\mathbf{1 2 9 3 . 7 7}$ | $\mathbf{1 2 9 3 . 7 7}$ | 74 | 50 |  |
| 280 | 20638.523 | 20680.748 | 63 | 22208 | $\mathbf{1 6 7 1 . 4 1}$ | $\mathbf{1 6 7 1 . 4 1}$ | 92 | 67 |  |
| 320 | 23102.561 | 23138.121 | 78 | 35916 | $\mathbf{1 8 2 2 . 7 6}$ | $\mathbf{1 8 2 2 . 7 6}$ | 111 | 80 |  |
| 360 | $\mathbf{2 6 4 5 7 . 6 9 7}$ | $\mathbf{2 6 4 5 7 . 6 9 7}$ | 92 | 49812 | $\mathbf{2 0 9 8 . 4 1}$ | $\mathbf{2 0 9 8 . 4 1}$ | 133 | 97 |  |
| 400 | $\mathbf{2 9 2 9 9 . 1 0 0}$ | $\mathbf{2 9 2 9 9 . 1 0 0}$ | 110 | 71251 | $\mathbf{2 2 2 3 . 9 1}$ | $\mathbf{2 2 2 3 . 9 1}$ | 161 | 117 |  |

Connection of the deployment of machines with the assignment of jobs to machines. Next, $\boldsymbol{m}$ separate job scheduling sub-problems on single machines.

Advantage - substantial simplification of PS.
The detailed analysis is an open issue, in particular, on the connection between location and assignment.

The first attempt can be found in
Hessler C.J. and Deghdak K. (2017) Discrete parallel machine makespan ScheLoc problem. Journal of Combinatorial Optimization, 34, 4, 1159-1186.
clusters of jobs are determined around launched sites for machines.

## Other cases and final remarks

Machine-dependent release dates $r_{i j}$ are figured in S_Seq.
PS needs a single release date $r_{j}$.
The substantiation other than max, min or mean value needs research.
We would have a new issue with machine-dependent release dates; the comparison to similar known problems required.

## Other cases and final remarks (3/3)

How to calculate $r_{i j}$ ?
Applied proposition: $r_{i j}\left(x_{i}\right)=\rho_{j}+v_{j}^{-1} d\left(a_{j}, x_{i}\right)$
Other methods for S_Unc, e.g., the probabilistic one and
release date values acquisition

Thank you for your attention.

