### The BOS/SOR2020 Conference, Palais Staszic, Warsaw / virtual mode Systems and Operational Research 2020

# **Evaluation of digital services by voting towards MCDM: the pedagogy of the Saari triangle**

#### Jaakko Hakula Free-lance researcher

Student in Health and Human Services Informatics, Faculty of Social Sciences and Business Studies, University of Eastern

Finland

GP, specialized in general and occupational medicine (univ. of Oulu, FINLAND);

Lower grade in practical philosophy (Univ. of Turku, FINLAND); partial studies: mathematics, information systems sciences, economics (several universities

in Finland)

jaakko.hakula@dnainternet.net

### SALUTING THE TWO PROFESSORS (EMERITI)





DONALD G. SAARI https://www.math.uci.edu/~dsaari/

HANNU NURMI https://www.utu.fi/en/people/hannu-nurmi

# I)Some background INFO on voting and decision-making

- Voting procedures describe the manner in which the preferences of individuals are combined to produce a collective decision.
- ASSUMPTION:
  - Each voter has a linear order on the set of candidates from the most desirable candidate to the least desirable one.
  - Each voter votes according to her the true preferences (i.e. sincerely).
- A voting procedure is defined by **<u>1</u>**) the type of a vote ,

### and 2) the aggregation rule.

- Voting methods are numerous, and using different methods the same group of voters can end up with different outcomes.
- The more candidates and voters, the more complexities and discrepancies arise <u>("The curse of dimensionality").</u>

### **II)Some background INFO on voting and decision-making**

- Especially **positional procedures** are complex: voting outcomes can change when the amount of candidates (alternatives) are either added or dropped.
- Varying the choice of positional methods outcomes become most contradictory although the marked ballots fix the voters' (decision-makers') opinions: with some methods some alternatives win while with others they may be bottom-ranked.

**II)Some background INFO on voting and decision-making** 

An election or decision outcome not necessarily reveals the true preferences of the voters but moreover the choice of an election rule. Problems arise when a voting rule ignores crucial but available information about the profile.

As voting methods are prototypes of general aggregation rules, same kind of inconsistencies may occur in other disciplines [multi-criteria decision-making (MCDM), economics, statistics ...] as well.

# The Saari triangle

• With a choice set of three alternatives

 $\underline{A}$ ,  $\underline{B}$ , and  $\underline{C}$ , there are

six possible (strict) preference profiles

for each mode:

- 1. A > B > C; 2. A > C > B; 3. C > A > B;
  4. C > B > A; 5. B > A > C; 6. B > C > A
- These profiles can be represented geometrically in a triangle, with each vertex representing a choice option.
- The triangle can then be divided into six equally large (ranking) regions, which represent the specific profiles.
   [with the ties counted in – a total of thirteen (13) regions is defined



# The Saari triangle

C>A>B C>B>A

A>B>C

B>C>A

A>C>B

Α

 The ordinal ranking of a point in the triangle comes from its distances to the vertices where <u>"the closer the better"</u>

The midpoint of the triangle represents a <u>complete tie</u> between the alternatives with equal share of votes for each. The median line initiating from any of the vertices dividing the opposite side of the triangle to parts of equal length, represents a <u>tie between the</u> <u>two other alternatives</u>.

 A positional election with the three candidates A, B, and C is defined by the (normalized) voting vector (s)=w(1),w(2),w(3)=(1,s,0), where s, 0≤s≤1, is a specified weight for a second-ranked alternative (i.e. candidate). For a given voting procedure each choice option receives a number of points reflecting its ranking. One realization of the Saari triangle : the voting vector (s)=w(1),w(2),w(3)=(1,s,0)

#### 1)WITH THE PLURALITY RULE

("VOTE FOR ONE")"

S=0, the positional rule reduces to the
plurality method W(PL)=(1,0,0)

#### A WINS

#### 2)WITH THE ANTIPLURALITY RULE ("VOTE FOR TWO")

S=1,the antiplurality method gives
the results W(APL)=(1,1,0),

i.e. against the 3<sup>rd</sup>-place alternative

#### **B WINS**

### 3)WITH THE BORDA COUNT (2,1,0)

S=1/2 gives the Borda count W(BC)=(2,1,0),

i.e. 2 points for each 1<sup>st</sup>-place vote, 1 point for each 2<sup>nd</sup>-place vote - 0 points for 3<sup>rd</sup>-place votes. **C WINS** 



# I)The procedure line: the methodological essence

The plurality and antiplurality outcomes define the endpoints of the procedure line, and the w(s) outcome is the point on the procedure line which is 2(s) of the distance from the plurality endpoint. Experimenting with the placement of lines the value of k is restricted between unity and seven. SIC! **A PROCEDURE LINE CAN CROSS NO MORE** THAN SEVEN (7) OF THE THIRTEEN (=13) **RANKING REGIONS.**  $(c_2) Q$ 







# II)The procedure line: the methodological essence

If a procedure line has its endpoints in regions with reversed strict rankings, then the line either passes through the complete indifference point (so, k = 3) or through k = 7regions.

If k has an even value (k=2, 4 or 6),

<u>then the geometry requires an endpoint to be</u> <u>on an indifference line of the representation</u> <u>triangle (i.e. a pairwise tie).</u>

ONLY THE ENDPOINTS MATTER! THE PLURALITY AND ANTIPLURALITY POINTS.



# III)The procedure line: the methodological essence

IN CONCLUSION

THE PROBALITY TO GET  $\frac{7}{2}$  DIFFERENT POSITIONALS OUTCOMES IS= 0.06. THE PROBALITY TO GET  $\frac{5}{2}$  DIFFERENT POSITIONALS OUTCOMES IS= 0.19. THE PROBALITY TO GET  $\frac{3}{2}$  DIFFERENT POSITIONALS OUTCOMES IS= 0.44. THE PROBALITY TO GET THE SAME (K=1) OUTCOMES IS= 0.31.

<u>THEY ALL ADD UP TO ONE (0.06+0.19+0.44+0.31 = 1).</u>

| AN EXAMPLE OF A PREFERENCE PROFILE [15] |                     |                       |                     |  |
|-----------------------------------------|---------------------|-----------------------|---------------------|--|
| NUMBER<br>OF<br>VOTES                   | RANKING             | NUMBER<br>OF<br>VOTES | EANKING             |  |
| 5                                       | A ≻B ≻C             | 4                     | C≻B≻A               |  |
| 2                                       | $A \succ C \succ B$ | 1                     | $C \succ A \succ B$ |  |
| 4                                       | B>-C>-A             | 0                     | B ≻A>C              |  |



|   | PAIRWISE RANKINGS [15]                                                                                          |
|---|-----------------------------------------------------------------------------------------------------------------|
|   | -> CYCLIC PREFERENCES                                                                                           |
|   | -> NO RATIONAL SOLUTION!                                                                                        |
|   | $A > B \equiv 9 > 8 \equiv (2+2+5=9) > (4+4+0=8)$                                                               |
|   | B>C= 9>8= (5+0+4- 9)>(2+2+4-8)                                                                                  |
| _ | C>A=10>7=(4+4+2=10)>(0+5+2=7)                                                                                   |
|   | The second se |

Figure 1. The Saari triangle with an example case (Saari, 2008).

### Three-Candidate Elections Using Saari Triangles

http://demonstrations.wolfram.com/ThreeCandidateElectionsUsingSaariTriangles/

THE PLURALITY METHOD(S=0)

THE ANTIPLURALITY METHOD(S=1) THE BORDA COUNT (S=0.5)



### **VOTING AND MCDM – AN IMAGINARY EXAMPLE**

"As candidates and voters in SC are put to stand for

alternatives and criteria in MCDM"

- The three alternative websites for digital services:
- i) DIGITAL WEBSITE A
- ii) DIGITAL WEBSITE B
- iii) DIGITAL WEBSITE C

which are ranked according to **SIX CRITERIA**:

- 1) overall usability of digital services, with the weight 5 (=5votes)
- 2) flexibility between digital and face-to-face services, with the weight 4 (= 4 votes)
- 3) reliability of information, with the weight 4 (=4 votes)
- 4) interoperability of the information systems, with the weight 2 (=2 votes)
- 5) cost-effectiveness (of the services), with the weight 2 (= 2 votes)
- 6) many other unspecified criteria, with a zero weight (=0 votes)



#### **References**

Aziz A et al. (2019) Computational social choice: the first ten years and beyond.

In: Steffen B, Woeginger G,eds. Computing and Software Science. Lecture Notes in Computer Science, vol 10000. Springer, Cham; [cited 2020 Nov 27]. https://doi.org/10.1007/978-3-319-91908-9\_4

Brams S.J. and Fishburn P.C.Voting Procedures (2002) In: K.J.Arrow et al., eds. Handbooks in Economics 19: Handbook of Social Choice and Welfare, Vol. 1. Elsevier 2002.

Brender McNair J. (2005) *Handbook of Evaluation Methods for Health Informatics.* Elsevier Academic Press;c2005.

Conrad D. and Openo J. (2018) Assessment strategies for online learning : engagement and authenticity. AU Press. [cited 2020 Nov 27]. Available from: https://doi.org/10.15215/aupress/9781771992329.01

Floridi L. (2019) Translating principles into practices of digital ethics: five risks of being unethical. *Philosophy & Technology*, 32, 185-93. [cited 2020 Nov 29 <u>https://doi.org/10.1007/s13347-019-00354-x</u>

Hansson S.O. and Grüne-Yanoff T. (2017) Preferences. Stanford Encyclopedia of Philosophy. [cited 2020 Nov 28]. Available from: https://plato.stanford.edu/entries/preferences/

List C. (2013) Social choice theory. Stanford Encyclopedia of Philosophy. [cited 2020 Nov 29]. Available from: https://plato.stanford.edu/entries/social-choice/

```
Nurmi H. and Meskanen T. (2000) Voting Paradoxes and MCDM. Group Decision and Negotiation, 9:297-313.
```

```
Rojas D. and Carnicero J. (2018) Big data and public health systems: issues and opportunities . International Journal of Artificial Intelligence and Interactive Multimedia, 4, 7, 53-59. [cited 2020 Nov 29]. Available from: 
https://www.ijimai.org/journal/bibcite/reference/2620
```

Romney M. et al. (2016) Three-Candidate Elections Using Saari Triangles. Wolfram Demonstrations Project. [cited 2020 Nov 30]. Available from: https://demonstrations.wolfram.com/ThreeCandidateElectionsUsingSaariTriangles/

Saari D.G. (1999) Explaining All Three-Alternative Voting Outcomes. *Journal of Economic Theory*, 87, 2, 313-355.

- Saari D.G. (2008) Complexity and the geometry of voting. *Mathematical and Computer Modelling*, 48, 9-10, 1335-1356.
- Saari D.G. and Barney S. (2003) Consequences of reversing preferences. *The Mathematical Intelligencer*, 25:17-31.
- Saranto K. et al. (2017) The guiding role of a paradigm in informatics education and research. *Stud Health Technol Inform,* 238, 235-238. [cited 2020 Nov 30]. Available from: <u>https://pubmed.ncbi.nlm.nih.gov/28679932/</u>

Schoop M and Kilgour DM, eds. (2017) *Group decision and negotiation. A sociotechnical perspective*.17th International Conference, GDN 2017 Stuttgart, Germany, August 14–18, 2017 Proceedings. Springer Cham;[cited 2020 Jul 12]. Available from: https://doi.org/10.1007/978-3-319-63546-0