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Problem setting

We consider the following finite-sum minimization problem:

min
x∈Rn

fN(x) =
1

N

N
∑

i=1

φi(x), (1)

where φi : R
n → R, i = 1, . . . , N , are continuously differentiable.

Several problems in machine learning can be cast in the form (1): binary or
multinomial classification, data fitting, sample average approximation ...

The loss function fN is often nonconvex, e.g. in the case of neural networks

Big data applications ⇒ N very large ⇒ fN (x) and ∇fN (x) very expensive!
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Stochastic gradient methods

Stochastic gradient descent (SGD)
Given x0 ∈ R

n, compute

xk+1 = xk − αkgk, k = 0, 1, . . .

where αk > 0 is the learning rate and gk is the stochastic gradient, defined by

gk = ∇fNk
(xk) =

1

Nk

∑

i∈INk

∇φi(xk),

where INk
⊂ {1, . . . , N} and |INk

| = Nk.

If Nk = 1 ⇒ standard SGD

If Nk > 1 ⇒ mini-batch SGD
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Stochastic gradient methods

Theorem (Bottou et al., SIAM Rev., 2018)

Suppose ∇fN is L−Lipschitz continuous. Let Ω be an open set s.t. {xk} ⊂ Ω
and fN (x) ≥ flow for x ∈ Ω. Assume there exist µ,M1,M2 > 0 s.t.

∇fN (xk)
T
E(gk) ≥ µ‖∇fN (xk)‖

2, E(‖gk‖
2) ≤ M1 +M2‖∇fN (xk)‖

2.

If αk ≡ α, with 0 < α ≤ µ/(LM2), then

E

(

1

K

K
∑

k=1

‖∇fN (xk)‖
2

)

≤
LαM1

µ
+

2(fN (x1)− flow)

µαK
.

✓ The average norm of the gradients can be made arbitrarily small by picking a
small α ...

✗ ... but the smaller α, the slower the convergence rate!

✗ Sublinear convergence for strongly convex fN holds only if αk is diminishing:

∞
∑

k=0

αk = ∞,

∞
∑

k=0

α2
k < ∞.
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Globalization strategies

SGD and its variants employ stochastic (possibly and occasionally full) gradient
estimates and do not rely on any machinery from standard globally convergent
optimization procedures, such as linesearch or trust-region.

On the other hand, a few recent papers rely on such strategies for selecting
the steplength1,2,3. Part of them mimic traditional step acceptance rules using
stochastic estimates of functions and gradients, which are required to be suffi-
ciently accurate in probability.

The purpose of these methods is to partially overcome the dependence of the
steplengths from the Lipschitz constant of the gradient.

1S. Bellavia, N. Krejić, B. Morini, Comput. Optim. Appl. 76, 701–736, 2020
2R. Chen, M. Menickelly, K. Scheinberg, Math. Progr. 169(2), 447–487, 2018
3C. Paquette, K. Scheinberg, arXiv:1807.07994, 2018
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Globalization strategies

Example: STORM (STochastic Optimization with Random Models)4,5

0. Choose x0 ∈ R
n, 0 < ∆0 < ∆max, γ > 1, α, β, η1 ∈ (0, 1), η2 > 0. Set k = 0.

1. Build a model mk(y) which is α−probabilistically κ−fully linear, i.e.

Pr{|fN(y)−mk(y)| ≤ κ∆2
k, ‖∇fN (y)−∇mk(y)‖ ≤ κ∆k, ∀ y ∈ B(xk ,∆k)} ≥ α.

2. Compute sk = argmin‖s‖≤∆k
mk(s) approximately.

3. Compute f0
k and fs

k which are β−probabilistically ǫF−accurate, i.e.

Pr{|f0
k − fN (xk)| ≤ ǫF∆2

k, |fs
k − fN (xk + sk)| ≤ ǫF∆2

k} ≥ β.

4. Compute ρk =
f0
k−fs

k

mk(xk)−mk(xk+sk)
.

If ρk ≥ η1 and ‖gk‖ ≥ η2∆k set xk+1 = xk + sk, ∆k+1 = min{γ∆k,∆max}
else xk+1 = xk, ∆k+1 = γ−1∆k, and go to Step 1.

✓ If mk(s) = fk + gTk s, STORM is an SGD method with adaptive steplength

✓ Probabilistic accuracy of mk, f0
k , fs

k guarantees convergence in probability

✗ Function and gradient need to be estimated with increasingly high precision!

4S. Bandeira, K. Scheinberg, L.N. Vicente, SIAM J. Optim. 24(3), 1238–1264, 2014
5R. Chen, M. Menickelly, K. Scheinberg, Math. Progr. 169(2), 447–487, 2018
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The proposed approach

We propose a stochastic first-order trust-region method with the following features.

The trust-region model and acceptance rule employ both function and gradi-
ent estimates (similarly to STORM).

The function sample size is computed dynamically according to a determinis-
tic rule inspired by the Inexact Restoration (IR) Method6 (unlike STORM).

We require probabilistic accuracy for the gradient estimates only when the full
function sample size is reached (unlike STORM).

GOAL: delay the use of the full function sample size and the adoption of proba-
bilistically accurate random models as much as possible.

6J.M. Martinez, E.A. Pilotta, J. Optim. Theory Appl. 104, 135–163, 2000
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Ingredient #1: the Inexact Restoration method

The Inexact Restoration (IR) method is a constrained optimization tool suitable for
problems where one does not want to enforce feasibility in all iterations.
The key idea is to improve feasibility and optimality in separate procedures. Each
iteration ensures the sufficient decrease of a suitable merit function and, under
certain assumptions, convergence to a feasible optimal point.

IDEA: apply the IR strategy to dynamically select the function sample size.
To this aim, let us rewrite the finite-sum minimization problem as

min
x∈Rn

fM (x) =
1

M

∑

i∈IM

φi(x)

s.t. M = N

where IM ⊂ {1, . . . , N}, |IM | = M .
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Ingredient #1: the Inexact Restoration method

We measure the level of infeasibility with respect to the constraint M = N by using

h : N → R decreasing function such that h(1) > 0 and h(N) = 0.

We also introduce the merit function

Ψ(x,M, θ) = θfM (x) + (1− θ)h(M), θ ∈ (0, 1).

Then, the IR method involves the following steps:

compute Ñk+1 such that h(Ñk+1) ≤ rh(Nk), r ∈ (0, 1) (restoration phase);

compute the function sample size Nk+1 ≤ Ñk+1;

based on the inexact model mk(p) for the function fNk+1
around xk,

compute the trial point xk + pk;

compute θk+1, consider the predicted and actual reduction defined as

Predk(θk+1) = θk+1(fNk
(xk)−mk(pk)) + (1− θk+1)(h(Nk)− h(Ñk+1))

Ared(xk + pk, θk+1) = Ψ(xk, Nk, θk+1)−Ψ(xk+1, Nk+1, θk+1)

and accept the trial point only if

Ared(xk + pk, θk+1) ≥ η Predk(θk+1), η ∈ (0, 1).
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Ingredient #2: the trust-region approach

We consider a linear model mk(p) of fNk+1
around xk of the form

mk(p) = fNk+1
(xk) + gTk p,

and minimize it over the ball B(0,∆k), obtaining

pk = argmin
‖p‖≤∆k

mk(p).

The trial point has the form

xk + pk = xk −
∆k

‖gk‖
gk,

which is an SGD step with adaptive steplength!

The stochastic gradient gk is not necessarily computed using the same sam-
ple size as fNk+1

. For instance, we allow for subsampling over INk+1
, i.e.

gk =
1

Nk+1,g

∑

i∈INk+1,g

∇φi(xk),

where INk+1,g
⊂ INk+1

and |INk+1,g
| = Nk+1,g ≤ Nk+1.
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The proposed algorithm

SIRTR - Stochastic Inexact Restoration Trust-Region algorithm

Choose x0 ∈ R
n, N0 in (0, N ], θ0, r, η ∈ (0, 1), 0 < ∆0 < ∆max, γ > 1, µ, η2 > 0.

STEP 0. Set k = 0.

STEP 1. If Nk < N , set Ik = 0 and find Ñk+1 such that Nk < Ñk+1 ≤ N and

h(Ñk+1) ≤ rh(Nk).

Else set Ik = 1 and Ñk+1 = N .

STEP 2. Find Nk+1 such that Nk+1 ≤ Ñk+1 and

h(Nk+1)− h(Ñk+1) ≤ µ∆2
k.

STEP 3. Choose the stochastic gradient gk ∈ R
n and set pk = −∆k

gk
‖gk‖

.

STEP 4. If Nk = N , Nk+1 < N and

fN (xk)−mk(pk) < ∆k‖gk‖,

take ∆k = ∆k/γ and go to STEP 2.
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The proposed algorithm

SIRTR - Stochastic Inexact Restoration Trust-Region algorithm

Choose x0 ∈ R
n, N0 in (0, N ], θ0, r, η ∈ (0, 1), 0 < ∆0 < ∆max, γ > 1, µ, η2 > 0.

STEP 5. Compute the penalty parameter

θk+1 =







θk, if Predk(θk) ≥ η(h(Nk) − h(Ñk+1))
(1−η)(h(Nk)−h(Ñk+1))

mk(pk)−fNk
(xk)+h(Nk)−h(Ñk+1)

, otherwise.

STEP 6. If Ared(xk + pk, θk+1) ≥ η Predk(θk+1) and (‖gk‖ − η2∆k)Ik ≥ 0, set

xk+1 = xk + pk

∆k+1 =

{

∆k, if Nk < N,

min{γ∆k,∆max}, otherwise,

set k = k + 1 and go to STEP 1.
Else set xk+1 = xk, ∆k+1 = ∆k/γ, k = k + 1, Ñk+1 = Ñk, Ik+1 = Ik
and go to STEP 2.

Simone Rebegoldi A stochastic inexact restoration trust-region method BOS/SOR 2020 11 / 22



Convergence properties

Assumptions

1. There exist Ω ⊂ R
n, flow, fup such that {xk} ⊂ Ω and

flow < fM (x) < fup, ∀ 1 ≤ M ≤ N, x ∈ Ω.

2. The gradients ∇φi, 1 ≤ i ≤ N , are Lipschitz continuous on Ω.

3. There exists Γ > 0 such that
∥

∥gk −∇fNk+1
(xk)

∥

∥ ≤ Γ, ∀ k ∈ N.

Under these mild assumptions, we can prove some basic properties of SIRTR:

if Nk < N , there exists ∆ > 0 such that iteration k is successful for ∆k ≤ ∆

∆k → 0 as k → ∞

Nk = N for all k sufficiently large.
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Convergence properties

The convergence analysis relies on the Lyapunov type function defined as

Φ(x,N, θ,∆) = v(Ψ(x,N, θ) + Σθk) + (1− v)∆2,

where v ∈ (0, 1) and Σ is such that fNk
(x)− h(Nk) + Σ ≥ 0 for x ∈ Ω.

Our aim is to guarantee the sufficient decrease of Φ along successive iterations.
Setting Φk = Φ(xk, Nk, θk,∆k), since {θk} is decreasing, we can show that

Φk+1 − Φk ≤ −vAred(xk+1, θk+1) + (1− v)(∆2
k+1 −∆2

k).

Therefore, the possible decrease of {Φk} depends on both the actual reduction
and the update rule of the trust-region radius.

Let us distinguish the iteration indexes k as below:

I1 = {k ≥ 0 s.t. h(Nk)− h(Ñk+1) > 0},

I2 = {k ≥ 0 s.t. h(Nk) = h(Ñk+1) = 0, Nk+1 = N},

I3 = {k ≥ 0 s.t. h(Nk) = h(Ñk+1) = 0, Nk+1 < N}.
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Convergence properties

Lemma

Let Assumptions 1–3 hold, kφ = max{|flow|, |fup|}, h = h(N − 1), θ = infk θk.

1. If k is unsuccessful, we have

Φk+1 − Φk ≤

(

v

(

2κφ

∆2
+ µ

)

+ (1− v)
1− γ2

γ2

)

∆2
k.

2. If k is successful and k ∈ I1 we have

Φk+1 − Φk ≤ −v

(

η2(1− r)h

∆2
max

)

∆2
k;

if k is successful and k ∈ I2 ∪ I3, we have

Φk+1 −Φk ≤
(

−vηη2θ + (1− v)(γ2 − 1)
)

∆2
k.

A suitable choice of v and η2 guarantees the sufficient decrease for all iterations.
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Convergence properties

Theorem 1 (S. Bellavia, N. Krejić, B. Morini, S. Rebegoldi, 2020)

Let Assumptions 1–3 hold. If the following condition holds

η2 >
γ2

ηθ

(

2κφ

∆2
+ µ

)

, (2)

then there exist v ∈ (0, 1) and σ > 0 such that

Φk+1 − Φk ≤ −σ∆2
k, ∀ k ≥ 0.

Consequently, we have
∞
∑

k=0

∆2
k < ∞,

and Nk+1 = Ñk+1 = N for k sufficiently large.

✓ No probabilistic accuracy required

✗ The parameter η2 may need to be large to satisfy (2) ...

✓ ... However, condition ‖gk‖ ≥ η2∆k goes into action only when Nk = N .
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Convergence properties

Theorem 2 (S. Bandeira et al., SIAM J. Optim., 2014)

Let Assumptions 1–3 and condition (2) hold.
Denote with k̄ the first index such that Nk+1 = Ñk+1 = N for all k ≥ k̄.
If model mk(p) is α−probabilistically κ−fully linear with α ≥ 1/2 for k ≥ k̄, then

Pr
{

lim
k→∞

‖∇fN (xk)‖ = 0
}

= 1.

✓ Under the assumptions of Theorem 2 and for k sufficiently large, SIRTR re-
duces to STORM with exact function evaluations and random gradients

✓ Convergence in probability

✗ In order to impose the probabilistic accuracy, one should takeNk+1,g ≥ O(1/∆2
k)

⇒ very large Nk+1,g when ∆k is small!
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Preliminary numerical results

We tested our method on a nonconvex problem arising in binary classification.
Let {(ai, bi)}

N
i=1 denote the pairs forming the training set, being ai ∈ R

n the vector
containing the entries of the i-th example and bi ∈ {0, 1} its label. Then the
classification problem is solved by minimizing

fN (x) =
1

N

N
∑

i=1

(

bi −
1

1 + e−aT
i
x

)2

.

Training set Testing set
Data set N n NT

A9A 22793 123 9768
IJCNN1 49990 22 91701
MNIST 60000 784 10000
HTRU2 10000 8 7898

Table: Datasets used. For each data set, N is the number of training examples, n the
dimension of each instance, and NT the number of elements in the testing set.
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Preliminary numerical results

Infeasibility measure

h(M) =
N −M

N
, 1 ≤ M ≤ N.

Function sample size

Ñk+1 = min{N, ⌈c̃ ·Nk⌉}, c̃ > 1

Nk+1 =











⌈Ñk+1 − µN∆2
k⌉, if ⌈Ñk+1 − µN∆2

k⌉ ∈ [N0, 0.95N ]

Ñk+1, if ⌈Ñk+1 − µN∆2
k⌉ < N0

N, if ⌈Ñk+1 − µN∆2
k⌉ > 0.95N.

Stochastic gradient

gk = ∇fNk+1,g
(xk), where Nk+1,g = ⌈c ·Nk+1⌉, c ∈ (0, 1].

Stopping criterion

‖∇fNk,g
(xk)‖ ≤ ǫ, |fNk

(xk)− fNk−1
(xk−1)| ≤ ǫ|fNk−1

(xk−1)|+ ǫ.
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Preliminary numerical results

Ñk+1 min{N, ⌈1.05Nk⌉} min{N, ⌈1.1Nk⌉} min{N, ⌈1.2Nk⌉}

cost err sub cost err sub cost err sub
A9A 18 0.169 46 29 0.165 32 55 0.164 10

IJCNN1 16 0.092 48 26 0.089 31 27 0.087 22
MNIST 20 0.152 46 40 0.144 37 81 0.141 18
HTRU2 31 0.022 40 38 0.024 25 58 0.024 13

Table: Average results obtained running SIRTR 50 times with N0 = ⌈0.1N⌉.
cost is the overall number of full function/gradient evaluations.
err is the classification error obtained with the final iterate.

sub is the number of times the problem is solved without reaching the full sample size.
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Preliminary numerical results

N0 ⌈0.001N⌉ ⌈0.01N⌉ ⌈0.1N⌉

cost err sub cost err sub cost err sub
A9A 18 0.185 48 14 0.179 49 18 0.169 46

IJCNN1 13 0.096 49 14 0.081 49 16 0.092 48
MNIST 3 0.267 50 11 0.170 49 20 0.152 46
HTRU2 4 0.045 49 25 0.025 42 31 0.022 40

Table: Average results obtained running SIRTR 50 times with Ñk+1 = min{N, ⌈1.05Nk⌉}.
cost is the overall number of full function/gradient evaluations.
err is the classification error obtained with the final iterate.

sub is the number of times the problem is solved without reaching the full sample size.
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Preliminary numerical results
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Figure: Decrease of the average classification error VS average computational cost.
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Conclusions and future work

We have proposed a first-order trust-region method with function and gradient es-
timates built via subsampling techniques. The choice of the function sample size
is deterministic and ruled by the inexact restoration approach.

The proposed method eventually reaches full precision in evaluating the objective
function. However, numerical tests show that the method is stable with respect to
the parameters, which makes easy to delay the use of the full sample size.

Future work will concern the numerical assessment of the algorithm in comparison
to other stochastic trust-region algorithms (STORM or TRish) and its extensive
application to neural networks.
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