

ADMM DIP-TV: combining Total Variation and Deep Image Prior for image restoration

<u>Pasquale Cascarano</u>, Andrea Sebastiani, Elena Loli Piccolomini, University of Bologna Maria Colomba Comes, Eugenio Martinelli, University of Rome Tor-Vergata

Warsaw, 15 December 2020

BOS/SOR2020 Conference

Session III: Advances in optimization techniques for machine learning

Outline

- 1. Imaging Inverse Problems
- 2. Variational approach
- 3. Tips on supervised learning
- 4. Deep Image Prior (DIP)
- 5. The DIPTV framework: ADMM-DIP TV
- 6. Results and final remarks

Imaging Inverse Problems

- Imaging inverse problems attempt to retrieve an unknown data from its measurement.
- The model we refer reads:

$$\mathsf{A}\mathsf{x} + \eta = \mathsf{b}$$

(1)

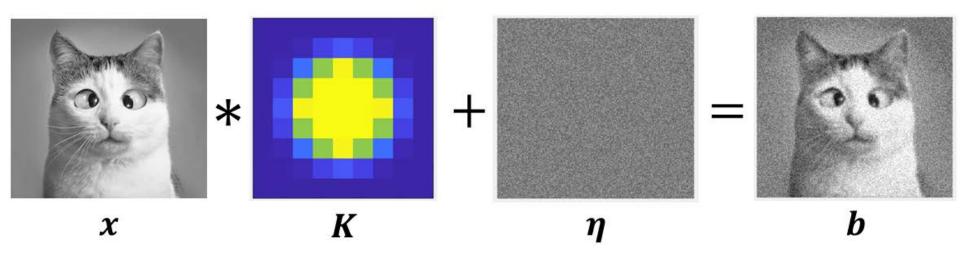
- The linear operator $A \in \mathbb{R}^{l \times n}$ is the forward operator, $x \in \mathbb{R}^n$ is the unknown data, $b \in \mathbb{R}^l$ is the measurement and η is the noisy component.
- Solving (1) means inverting the process:

$$b \longrightarrow x$$

• Different choices for $A \in \mathbb{R}^{l \times n}$ lead to different image restoration/reconstruction tasks.

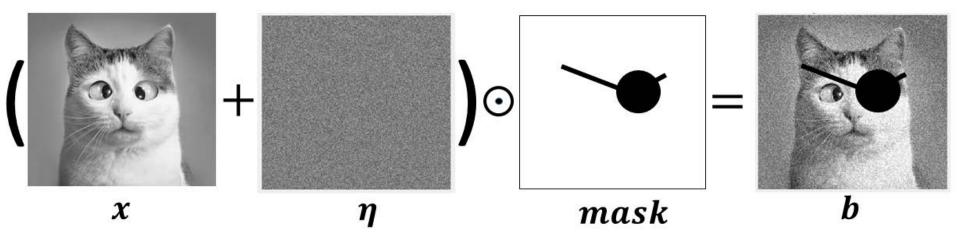
Deblurring

• The matrix A is the discretization of a convolution.



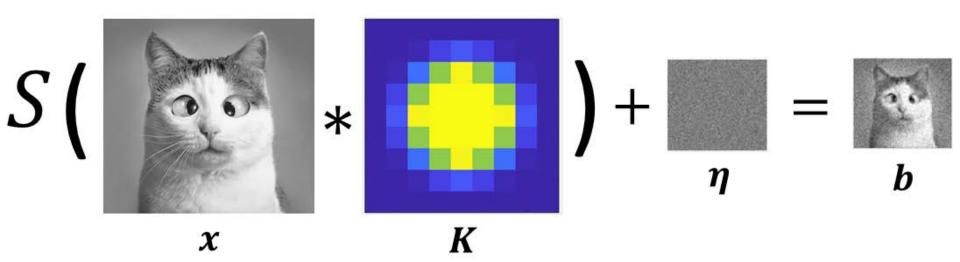
Inpaiting

• The matrix A is the discretization of the Hadamard product.



Super Resolution

• The matrix A is the discretization of the composition between a downsampling and a convolution operator.



Variational approach

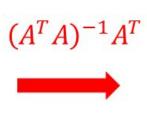
- Imaging inverse problems are usually ill-posed problems which means that the properties of existence, uniqueness and stability of the solution are not all verified
- They are re-casted as an optimization problem of the following form:

$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\arg\min \left\{ f(\mathbf{x}) + \lambda \phi(\mathbf{x}) \right\}}$$
(2)

where f encodes the information on the noise, ϕ reflects prior information on the desired solution and λ is a trade-off parameter.

Under Gaussian Noise assumptions and if no prior is defined, (2) reads:

$$\underset{\mathbf{x}\in\mathbb{R}^{n}}{\operatorname{arg\,min}}\frac{1}{2}\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_{2}^{2}$$



Total Variation

- The prior is usually defined by assuming some geometric and smoothness properties.
- One of the most famous prior is the Total Variation defined as follows:

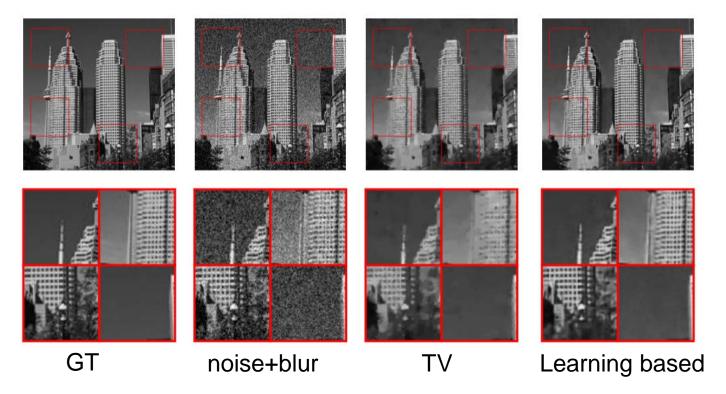
TV Prior

PROS

- Closed form.
- Strong mathematical foundations.
- Convergence guaranteed.

CONS

- Lack of flexibility.
- Complexity of image statistics is only partially reflected.



Ingredients:

• A set of example pairs (*training set*):

 $(\mathbf{b_1},\mathbf{x_1}),\ldots,(\mathbf{b_N},\mathbf{x_N})\in\mathbf{B}\times\mathbf{X}$

• An unknown target function which interpolates the training set:

$$\mathbf{h} \in \mathcal{H} := \{ \mathbf{h} | \mathbf{h} : \mathbf{B} \to \mathbf{X} \} \text{ s.t. } \mathbf{h}(\mathbf{b_i}) = \mathbf{x_i}$$

• A fixed parametric space (hypothesis space):

$$\mathcal{F}_{ heta} \subset \mathcal{H}$$

- A loss function deduced from a distance defined on ${\cal H}$

Tips on supervised learning

<u>Goal:</u>

• Approximate the target function by

$$\operatorname{\mathbf{NET}}_{(heta^*,\mathbf{N})}\in\mathcal{F}_{ heta},\quad\operatorname{\mathbf{NET}}_{(heta^*,\mathbf{N})}:\mathbf{B}
ightarrow\mathbf{X}$$

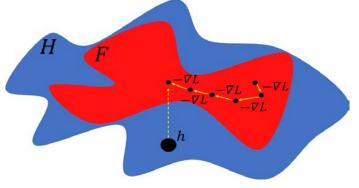
that is

$$\mathbf{b} \in \mathbf{B} \quad \mathbf{NET}_{(\theta^*, \mathbf{N})}(\mathbf{b}) \approx \mathbf{h}(\mathbf{b})$$

Approximation by gradient flow...

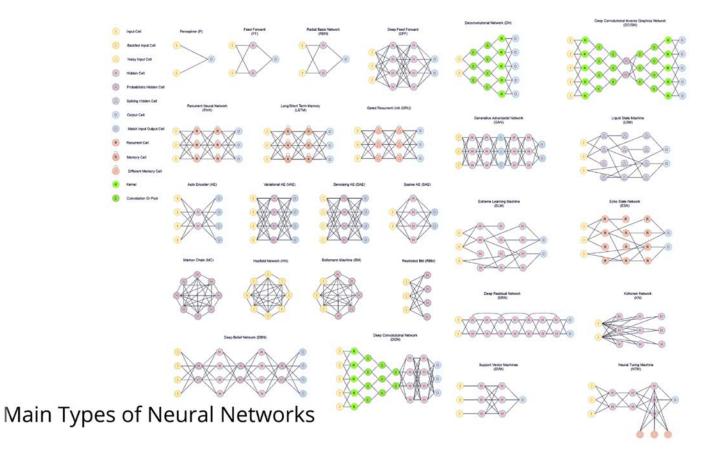
For example: Assuming the standard L_2 -norm distance

$$\mathbf{NET}_{\theta^*} \in \mathop{\arg\min}_{\mathbf{NET}_{\theta} \in \mathcal{F}_{\theta}} \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{NET}_{\theta}(\mathbf{b}_i) - \mathbf{h}(\mathbf{b}_i)\|_2^2$$

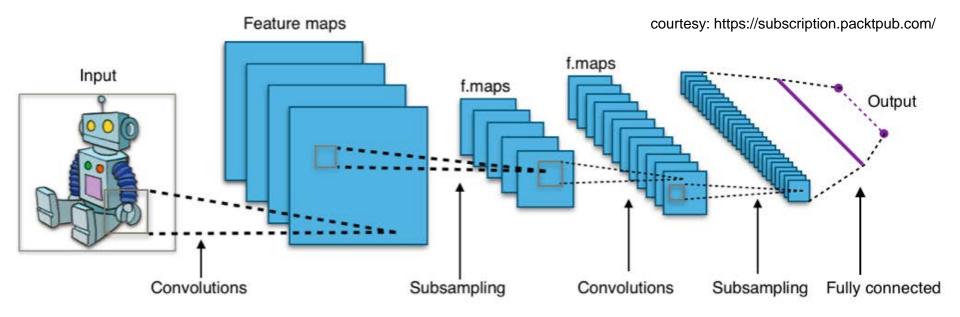


A plenty of NETs

• $\operatorname{NET}_{\theta} = f_{\theta_1}^1 \circ f_{\theta_2}^2 \circ \cdots \circ f_{\theta_t}^t$, $f_{\theta_i}^i$ is called *layer*



Convolutional Neural Networks

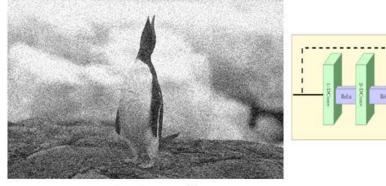


In Convolutional Neural Networks the layers are convolutions

An example: image denosing

- The target is the function which denoises a noisy input.
- The training set is a set of noisy-cleaned image pairs.
- The parametric space is fixed as the set of Convolutional Neural Networks with 7 convolutions, ReLu and Batch Normalization.
- The target is approximated by solving:

$$\mathbf{NET}_{\theta^*} \in \operatorname*{arg\,min}_{\mathbf{NET}_{ heta} \in \mathbf{CNN}_{ heta}} rac{1}{\mathbf{N}} \sum_{\mathbf{i}=1}^{\mathbf{N}} \|\mathbf{NET}_{ heta}(\mathbf{b}_{\mathbf{i}}) - \mathbf{x}_{\mathbf{i}}\|_{\mathbf{2}}^2$$



Hereitan Betwork Denoiser

eural Network Denoiser $\operatorname{NET}_{ heta^*}$

Denoised image $\widehat{\boldsymbol{x}} = \operatorname{NET}_{\theta^*}(\boldsymbol{b})$

Noisy image b

Learning Pros and Cons

PROS

- The learning process manages a huge number of training data and allows to capture a prior which reflects the complexity of image statistics.
- After training, the computation if really fast.
- Currently the state-of-the-art for several inverse problems related to images even with heavily degraded acquisition.

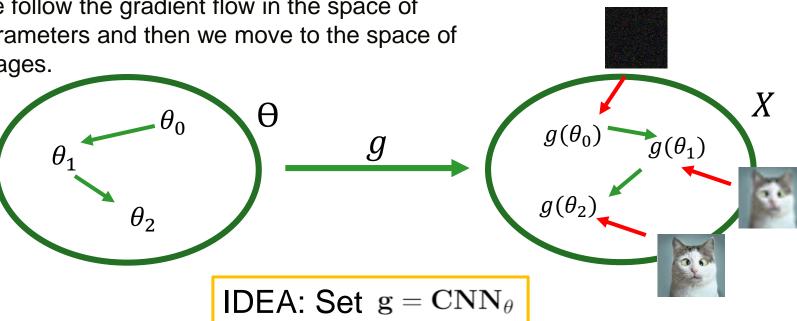
CONS

- Different image restoration/reconstruction tasks require different deep architectures.
- Unfortunately not all the real applications can count on a large number of training examples

Is there a way to avoid the training set?

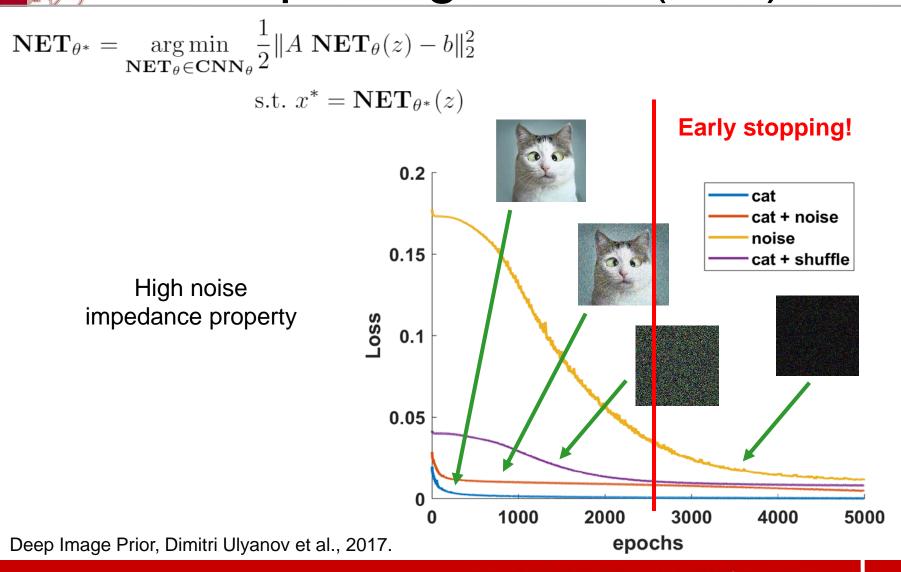
Parametrizing the space of images

- The prior is usually defined on a transformed domain, such as wavelet, gradient or overcomplete dictionary.
- We follow the gradient flow in the space of parameters and then we move to the space of images.



DIO RUM

Deep Image Prior (DIP)



High noise impedance property

LR noisy baby

GT baby

Stopping criterion needed!

ADMM-DIP TV

• Solving the constrained formulation of DIP TV functional using ADMM.

From an unconstrained formulation...

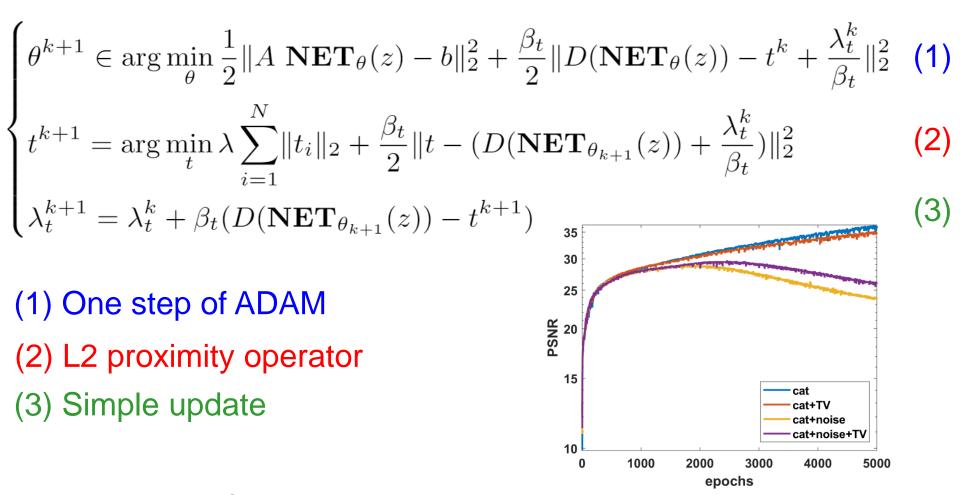
$$\mathbf{NET}_{\theta^*} = \underset{\mathbf{NET}_{\theta}\in\mathbf{CNN}_{\theta}}{\operatorname{arg\,min}} \frac{1}{2} \|A \ \mathbf{NET}_{\theta}(z) - b\|_2^2 + \lambda \sum_{i=1}^N \sqrt{(D_h \mathbf{NET}_{\theta}(z))_i^2 + (D_v \mathbf{NET}_{\theta}(z))_i^2}$$

To a constrained formulation...

$$\mathbf{NET}_{\theta^*} = \underset{\mathbf{NET}_{\theta} \in \mathbf{CNN}_{\theta}}{\operatorname{arg\,min}} \frac{1}{2} \| A \ \mathbf{NET}_{\theta}(z) - b \|_2^2 + \sum_{i=1}^N \| t_i \|_2$$

s.t. $D(\mathbf{NET}_{\theta}(z)) = t$

ADMM-DIP TV



Remark: Changing A in (1) allows to solve different image restoration tasks.

Boosting the standard DIP

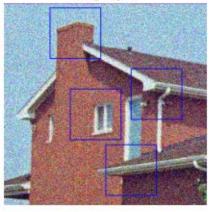
ADMM-DIP TV

SSIM=0.946, PSNR=28.378 SSIM=0.926, PSNR=27.638 SSIM=0.864, PSNR=24.185

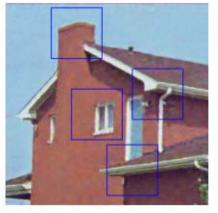
DIP

ADMM-DIP TV vs DIP

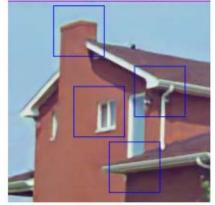
NOISY



DIP

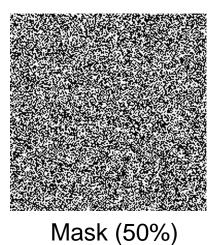


ADMM-DIPTV



Inpaiting with ADMM-DIP TV

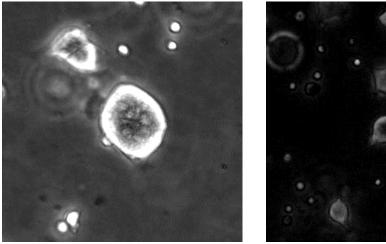
gt



ADMM-DIP TV

Time-Lapse Microscopy Video

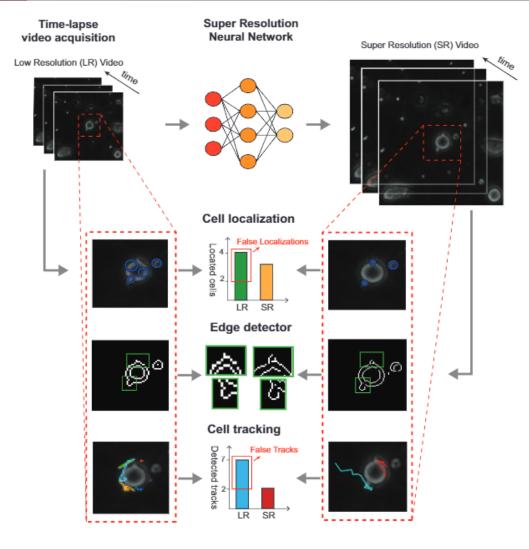
- Time-Lapse Microscopy Videos are sequences of frame with biological contents whose temporal frame rate goes from seconds to minutes, acquired by a TLM microscope.
- They are used combined with automated software to track the cells.
- The way in which the cells move, indeed, has been discovered meaningful to understand wound healing, morphogenesis, cancer growth and spread of metastasis.
- For example, some motility descriptors are extracted to uncover and quantitatively evaluate the response to target therapeutic agents



Cell Apoptosis

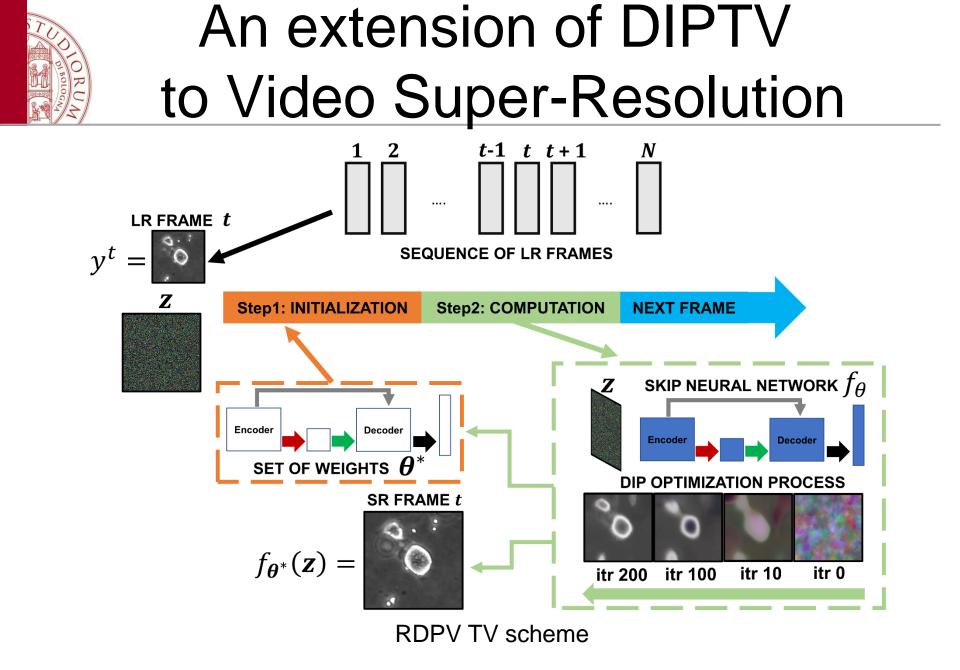
Breast cancer and immune cells interaction

Time-Lapse Microscopy Video

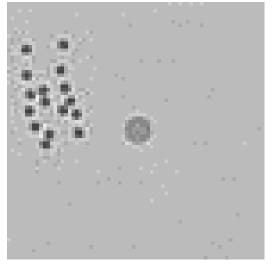


- The resolution of a TLM microscope is limited.
- An high spatial resolution positively affects the trustworthiness of the cell tracking.
- For this application it is not easy to acquire a representative dataset.

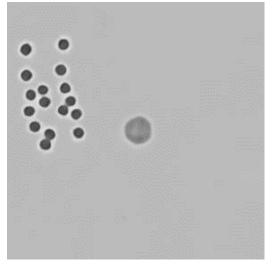
IDEA: Let's use DIPTV



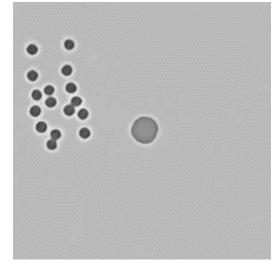
Results on synthetic Cell Video



LR TLM video



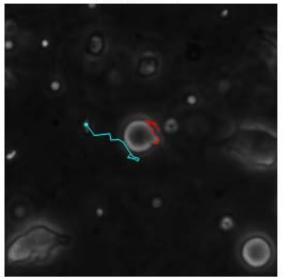
HR TLM video by DIP



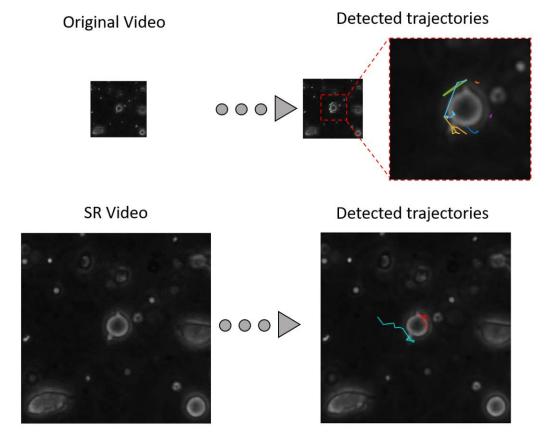
HR TLM video by RDPV-TV

Real Cell Video

Frame 14



HR video trajectories



Computed trajectories on LR and HR videos

Final remarks and future works

- The most striking property of DIP and DIPTV framework is that they do not require any training phase.
- DIP and DIPTV are useful for the solution of generic imaging inverse problems
- ADMM DIPTV leads to better results with respect to the DIP.
- DIPTV framework adapted to Time Lapse Video Microscopy Super Resolution.
- Future works will address the problem of solving the semi-convergence.

References:

- 1. ADMM-DIPTV: combining Total Variation and Deep Image Prior for image restoration, P.C, A. Sebastiani, M.C. Comes, arXiv.
- 2. Recursive Deep Prior Video: a Super Resolution algorithm for Time-Lapse Microscopy of organ-on-chip experiments, P.C, M.C. Comes et al., arXiv.

Thank for your attention