Line-search second-order methods for optimization in noisy environments

Marco Viola

Department of Mathematics and Physics University of Campania "L. Vanvitelli" marco.viola@unicampania.it

Joint work with
Daniela di Serafino - University of Naples Federico II
Nataša Krejić, Nataša Krklec Jerinkić - University of Novi Sad

BOS/SOR2020 Conference
Palais Staszic, Warsaw
December 15, 2020

Università
degli Studi
della Campania
Luigi Vanvitelli

Outline

(1) Problem, motivations and contribution
(2) The LSOS framework
(3) Numerical experiments with LSOS

4 Specializing LSOS for finite sums
(5) Numerical experiments with LSOS-BFGS
(6) Conclusions and future work

Outline

(1) Problem, motivations and contribution
(2) The LSOS framework
(3) Numerical experiments with LSOS

4 Specializing LSOS for finite sums
(5) Numerical experiments with LSOS-BFGS

6 Conclusions and future work

The problem

$\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} \phi(\boldsymbol{x})$

$\phi(\boldsymbol{x})$ twice continuously differentiable function in a noisy environment, i.e. $\phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x})$ and $\nabla^{2} \phi(\boldsymbol{x})$ are only accessible with some level of noise:

$$
\begin{aligned}
& f(\boldsymbol{x})=\phi(\boldsymbol{x})+\varepsilon_{f}(\boldsymbol{x}) \\
& \boldsymbol{g}(\boldsymbol{x})=\nabla \phi(\boldsymbol{x})+\boldsymbol{\varepsilon}_{g}(\boldsymbol{x}) \\
& B(\boldsymbol{x})=\nabla^{2} \phi(\boldsymbol{x})+\varepsilon_{B}(\boldsymbol{x})
\end{aligned}
$$

$\varepsilon_{f}(\boldsymbol{x})$ random number, $\boldsymbol{\varepsilon}_{g}(\boldsymbol{x})$ random vector, $\varepsilon_{B}(\boldsymbol{x})$ symmetric random matrix

The problem (cont'd)

The error may derive from:

- uncertainty on data;
- measurement errors;
- communication errors;
- computational inaccuracy (data come from a simulation);
- ...

The problem (cont'd)

The error may derive from:

- uncertainty on data;
- measurement errors;
- communication errors;
- computational inaccuracy (data come from a simulation);
- ...

Special cases:

- mathematical expectation:

$$
\phi(\boldsymbol{x})=E_{\xi \sim \mathcal{D}}[v(\boldsymbol{x}, \xi)], \quad \text { and } \quad f(\boldsymbol{x})=v(\boldsymbol{x}, \bar{\xi}), \text { with } \bar{\xi} \sim \mathcal{D}
$$

The problem (cont'd)

The error may derive from:

- uncertainty on data;
- measurement errors;
- communication errors;
- computational inaccuracy (data come from a simulation);
- ...

Special cases:

- mathematical expectation:

$$
\phi(\boldsymbol{x})=E_{\xi \sim \mathcal{D}}[v(\boldsymbol{x}, \xi)], \quad \text { and } \quad f(\boldsymbol{x})=v(\boldsymbol{x}, \bar{\xi}), \text { with } \bar{\xi} \sim \mathcal{D}
$$

- (large) finite sum of functions:

$$
\phi(\boldsymbol{x})=\sum_{i=1}^{N} \phi_{i}(\boldsymbol{x}), \quad \text { and } \quad f(\boldsymbol{x})=\sum_{i \in \mathcal{S}} \phi_{i}(\boldsymbol{x}), \text { with } \mathcal{S} \subseteq\{1, \ldots, N\}
$$

Stochastic optimization methods

First-order methods (NON-exhaustive list)

- Stochastic Approximation - SA (Stochastic Gradient - SG) [Robbins \& Monro, Ann. Math. Statistics 1951] (convergence in probability with harmonic-type step length, also almost sure (a.s.) convergence with SA variants)
- In the "realm" of machine learning:
- minibatch gradient methods, see e.g. [Bottou, Curtis \& Nocedal, SIREV 2018] (convergence in expectation of obj fun error with constant or harmonic-type step length)
- variance-reduction gradient methods, e.g. SVRG [Johnson \& Zhang, NIPS 2013], SAGA [Defazio, Bach \& Lacoste-Julien, NIPS 2014], JacSketch [Gower, Richtárik \& Bach, Math Prog 2020]
(linear convergence in expectation with constant step length)

Stochastic optimization methods (cont'd)

Methods using second-order info (NON-exhaustive list)

- Stochastic versions of Newton-type methods
- Ruppert, Ann Statist 1985
- Spall, Proc various IEEE Conferences 1994, 1995, 1005
- Byrd, Chin, Neveitt \& Nocedal, SIOPT 2011
- Byrd, Chin, Nocedal \& Wu, Math Program 2012
- Bellavia, Krejić \& Krklec Jerinkić, IMA JNA 2019
- Bollapragada, Byrd \& Nocedal, IMA JNA 2019
- Stochastic BFGS
- Byrd, Chin, Neveitt \& Nocedal, SIOPT 2011
- Moktari \& Ribeiro, IEEE TSP 2014
- Byrd, Hansen, Nocedal \& Singer, SIOPT 2016
- Gower, Goldfarb \& Richtárik, Proc ICML 2016
- Moritz, Nishihara \& Jordan, Proc MLR 2016

Our family of methods: LSOS

- Line-search Second-Order Stochastic algorithmic framework, where Newton-type and quasi-Newton directions are used
- Almost sure convergence of the sequence of iterates generated by the methods fitting into the LSOS framework and effectiveness in practice
- For finite-sum objective functions (e.g. in machine learning)
- stochastic L-BFGS for Hessian estimates + SAGA-type for gradient estimates + line search
- almost sure convergence of the sequence of iterates (for state-of-the-art stochastic L-BFGS convergence in expectation of the obj function error)
- linear convergence rate and worst-case $\mathcal{O}\left(\log \left(\varepsilon^{-1}\right)\right)$ complexity
- practical efficiency (comparison with state-of-the-art stochastic optimization methods)

Outline

(1) Problem, motivations and contribution
(2) The LSOS framework
(3) Numerical experiments with LSOS

4 Specializing LSOS for finite sums
(5) Numerical experiments with LSOS-BFGS

6 Conclusions and future work

SOS: Second-Order Stochastic method

```
Sketch of SOS method
    1: given \(\boldsymbol{x}_{0} \in \mathbb{R}^{n}\) and \(\left\{\alpha_{k}\right\} \subset \mathbb{R}_{+}\)
    2: for \(k=0,1,2, \ldots\) do
    3: compute \(\boldsymbol{d}_{k} \in \mathbb{R}^{n}\)
    4: set \(\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}\)
    5: end for
```

\boldsymbol{d}_{k} specified later

SOS: Second-Order Stochastic method

Basic assumptions

(1) ϕ strongly convex with Lipschitz-continuous gradient:

- \boldsymbol{x}_{*} unique solution
- $\mu I \preceq \nabla^{2} \phi(\boldsymbol{x}) \preceq L I$
(2) Harmonic step-length sequence:

$$
\alpha_{k}>0, \quad \sum_{k} \alpha_{k}=\infty, \quad \sum_{k} \alpha_{k}^{2}<\infty
$$

(3) Unbiased gradient estimator and bounded variance of gradient errors:

$$
\begin{aligned}
& \mathbb{E}\left(\varepsilon_{g}(\boldsymbol{x}) \mid \mathcal{F}_{k}\right)=0 \text { and } \mathbb{E}\left(\left\|\varepsilon_{g}(\boldsymbol{x})\right\|^{2} \mid \mathcal{F}_{k}\right) \leq M \\
& \left(\mathcal{F}_{k}=\sigma \text {-algebra generated by } \boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right)
\end{aligned}
$$

Basic assumptions on the search directions

Deterministic case:

© "Sufficient" descent direction:

$$
\nabla \phi\left(\boldsymbol{x}_{k}\right)^{\top} \boldsymbol{d}_{k} \leq-c_{2}\left\|\nabla \phi\left(\boldsymbol{x}_{k}\right)\right\|^{2}
$$

- Direction norm bounded by gradient:

$$
\left\|\boldsymbol{d}_{k}\right\| \leq c_{3}\left\|\nabla \phi\left(\boldsymbol{x}_{k}\right)\right\|
$$

Basic assumptions on the search directions

Stochastic case:
$c_{i}>0$ constants
(3) Deviation from descent direction allowed:

$$
\nabla \phi\left(\boldsymbol{x}_{k}\right)^{\top} \mathbb{E}\left(\boldsymbol{d}_{k} \mid \mathcal{F}_{k}\right) \leq c_{1} \delta_{k}-c_{2}\left\|\nabla \phi\left(\boldsymbol{x}_{k}\right)\right\|^{2}, \quad \delta_{k}>0, \quad \sum_{k} \alpha_{k} \delta_{k}<\infty
$$

(1) Direction norm bounded by noisy gradient:

$$
\left\|\boldsymbol{d}_{k}\right\| \leq c_{3}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\| \quad \text { a.s. }
$$

Basic assumptions on the search directions

Stochastic case:
$c_{i}>0$ constants
(3) Deviation from descent direction allowed:

$$
\nabla \phi\left(\boldsymbol{x}_{k}\right)^{\top} \mathbb{E}\left(\boldsymbol{d}_{k} \mid \mathcal{F}_{k}\right) \leq c_{1} \delta_{k}-c_{2}\left\|\nabla \phi\left(\boldsymbol{x}_{k}\right)\right\|^{2}, \quad \delta_{k}>0, \quad \sum_{k} \alpha_{k} \delta_{k}<\infty
$$

- Direction norm bounded by noisy gradient:

$$
\left\|\boldsymbol{d}_{k}\right\| \leq c_{3}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\| \quad \text { a.s. }
$$

Theorem
Under the previous assumptions, the sequence $\left\{\boldsymbol{x}_{k}\right\}$ converges to \boldsymbol{x}_{*} a.s.

Search directions using second-order information

Further (reasonable) assumptions

- Positive definite and bounded approximate Hessians: $\mu I \preceq B(\boldsymbol{x}) \preceq L I$
(0) Mutually independent noise terms $\varepsilon_{f}(\boldsymbol{x}), \varepsilon_{g}(\boldsymbol{x})$ and $\varepsilon_{B}(\boldsymbol{x})$ (to be relaxed for finite-sum problems)

Search directions using second-order information

Further (reasonable) assumptions
(c) Positive definite and bounded approximate Hessians: $\mu I \preceq B(\boldsymbol{x}) \preceq L I$
(T) Mutually independent noise terms $\varepsilon_{f}(\boldsymbol{x}), \varepsilon_{g}(\boldsymbol{x})$ and $\varepsilon_{B}(\boldsymbol{x})$ (to be relaxed for finite-sum problems)

Possible directions guaranteeing convergence:

- Newton directions:

$$
B\left(\boldsymbol{x}_{k}\right) \boldsymbol{d}_{k}=-\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)
$$

- "Inexact" Newton directions:

$$
\left\|B\left(\boldsymbol{x}_{k}\right) \boldsymbol{d}_{k}+\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\| \leq \delta_{k} \gamma_{k}
$$

γ_{k} random variable with bounded variance

Search directions using second-order information

Further (reasonable) assumptions

- Positive definite and bounded approximate Hessians: $\mu I \preceq B(\boldsymbol{x}) \preceq L I$
(0) Mutually independent noise terms $\varepsilon_{f}(\boldsymbol{x}), \varepsilon_{g}(\boldsymbol{x})$ and $\varepsilon_{B}(\boldsymbol{x})$ (to be relaxed for finite-sum problems)

Possible directions guaranteeing convergence:

- Newton directions:

$$
B\left(\boldsymbol{x}_{k}\right) \boldsymbol{d}_{k}=-\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)
$$

- "Inexact" Newton directions:

$$
\left\|B\left(\boldsymbol{x}_{k}\right) \boldsymbol{d}_{k}+\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\| \leq \delta_{k}\left(\omega_{1} \eta_{k}+\omega_{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\|\right)
$$

$\omega_{1}, \omega_{2} \geq 0$ constant, η_{k} random variable with bounded variance

LSOS: Line-search SOS

- A harmonic step-length sequence ($\sum_{k} \alpha_{k}=\infty, \sum_{k} \alpha_{k}^{2}<\infty$) may make the algorithm slow (the steplength becomes too small soon)
- Tuning is necessary to ensure reasonable results; if the steplengths are not small enough the algorithm may diverge

LSOS: Line-search SOS

- A harmonic step-length sequence $\left(\sum_{k} \alpha_{k}=\infty, \sum_{k} \alpha_{k}^{2}<\infty\right)$ may make the algorithm slow (the steplength becomes too small soon)
- Tuning is necessary to ensure reasonable results; if the steplengths are not small enough the algorithm may diverge

IDEA: start with line search and move to harmonic step lengths only if the line search produces small step lengths

LSOS: Line-search SOS

- A harmonic step-length sequence $\left(\sum_{k} \alpha_{k}=\infty, \quad \sum_{k} \alpha_{k}^{2}<\infty\right)$ may make the algorithm slow (the steplength becomes too small soon)
- Tuning is necessary to ensure reasonable results; if the steplengths are not small enough the algorithm may diverge

IDEA: start with line search and move to harmonic step lengths only if the line search produces small step lengths

- At each step the direction is not guaranteed to be a descent direction for $\phi(\boldsymbol{x})$

IDEA: use nonmonotone line search

LSOS: Line-search SOS (cont'd)

LSOS algorithm

1: given $\boldsymbol{x}_{0} \in \mathbb{R}^{n}, \eta \in(0,1), t_{\text {min }}>0$ and $\left\{\alpha_{k}\right\},\left\{\delta_{k}\right\},\left\{\zeta_{k}\right\} \subset \mathbb{R}_{+}$
2: set LSphase $=$ active
3: for $k=0,1,2, \ldots$ do
4: compute a search direction d_{k} such that

$$
\left\|B\left(\boldsymbol{x}_{k}\right) \boldsymbol{d}_{k}+\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\| \leq \delta_{k}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\|
$$

10: end for

LSOS: Line-search SOS (cont'd)

LSOS algorithm

1: given $\boldsymbol{x}_{0} \in \mathbb{R}^{n}, \eta \in(0,1), t_{\min }>0$ and $\left\{\alpha_{k}\right\},\left\{\delta_{k}\right\},\left\{\zeta_{k}\right\} \subset \mathbb{R}_{+}$
2: set LSphase $=$ active
3: for $k=0,1,2, \ldots$ do
4: compute a search direction \boldsymbol{d}_{k} such that

$$
\left\|B\left(\boldsymbol{x}_{k}\right) \boldsymbol{d}_{k}+\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\| \leq \delta_{k}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\right\|
$$

5: find a step length t_{k} as follows:
6: \quad if LSphase $=$ active then find t_{k} that satisfies

$$
f\left(\boldsymbol{x}_{k}+t_{k} \boldsymbol{d}_{k}\right) \leq f\left(\boldsymbol{x}_{k}\right)+\eta t_{k} \boldsymbol{g}\left(\boldsymbol{x}_{k}\right)^{\top} \boldsymbol{d}_{k}+\zeta_{k}
$$

7: \quad if $t_{k}<t_{\text {min }}$ then set LSphase $=$ inactive
8: \quad if LSphase $=$ inactive then set $t_{k}=\alpha_{k}$
9: \quad set $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+t_{k} \boldsymbol{d}_{k}$
10: end for

LSOS convergence

Theorem

Assume that $\left\{\zeta_{k}\right\}$ is summable and the objective function estimator f is unbiased, i.e.

$$
\mathbb{E}\left(\varepsilon_{f}(\boldsymbol{x}) \mid \mathcal{F}_{k}\right)=0 .
$$

If the sequence $\left\{\boldsymbol{x}_{k}\right\}$ generated by LSOS is bounded, then $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}_{*}$ a.s..

Outline

(1) Problem, motivations and contribution
2) The LSOS framework
(3) Numerical experiments with LSOS

4 Specializing LSOS for finite sums
(5) Numerical experiments with LSOS-BFGS

6 Conclusions and future work

Convex random problems (type 1)

$$
\phi(\boldsymbol{x})=\sum_{i=1}^{n} \lambda_{i}\left(e^{x_{i}}-x_{i}\right)+(\boldsymbol{x}-\mathbf{1})^{\top} A(\boldsymbol{x}-\mathbf{1})
$$

Convex random problems (type 1)

$$
\phi(\boldsymbol{x})=\sum_{i=1}^{n} \lambda_{i}\left(e^{x_{i}}-x_{i}\right)+(\boldsymbol{x}-\mathbf{1})^{\top} A(\boldsymbol{x}-\mathbf{1})
$$

- λ_{i} 's logarithmically spaced between 1 and κ
- $A \in \mathbb{R}^{n \times n}$ spd with eigenvalues λ_{i} (generated by sprandsym)
- $n=10^{3}, \kappa=10^{2}, 10^{3}, 10^{4}$
- $\varepsilon_{f}(\boldsymbol{x}) \sim \mathcal{N}(0, \sigma),\left(\varepsilon_{g}(\boldsymbol{x})\right)_{i} \sim \mathcal{N}(0, \sigma)$ and

$$
\varepsilon_{B}(\boldsymbol{x})=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right), \quad \mu_{i} \sim \mathcal{N}(0, \sigma)
$$

- $\sigma=0.1 \% \kappa, 0.5 \% \kappa, 1 \% \kappa$
- x_{*} computed with high accuracy using deterministic L-BFGS (M. Schmidt, https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html)

Convex random problems (type 1)

$$
\phi(\boldsymbol{x})=\sum_{i=1}^{n} \lambda_{i}\left(e^{x_{i}}-x_{i}\right)+(\boldsymbol{x}-\mathbf{1})^{\top} A(\boldsymbol{x}-\mathbf{1})
$$

- λ_{i} 's logarithmically spaced between 1 and κ
- $A \in \mathbb{R}^{n \times n}$ spd with eigenvalues λ_{i} (generated by sprandsym)
- $n=10^{3}, \kappa=10^{2}, 10^{3}, 10^{4}$
- $\varepsilon_{f}(\boldsymbol{x}) \sim \mathcal{N}(0, \sigma),\left(\varepsilon_{g}(\boldsymbol{x})\right)_{i} \sim \mathcal{N}(0, \sigma)$ and

$$
\varepsilon_{B}(\boldsymbol{x})=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right), \quad \mu_{i} \sim \mathcal{N}(0, \sigma)
$$

- $\sigma=0.1 \% \kappa, 0.5 \% \kappa, 1 \% \kappa$
- x_{*} computed with high accuracy using deterministic L-BFGS
(M. Schmidt, https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html)

Comparison of

- LSOS with exact solution of noisy Newton systems
- SOS with pre-defined step length $\alpha_{k}=\frac{1}{\left\|\boldsymbol{d}_{0}\right\|} \frac{T}{T+k}, \quad T=10^{6}$
- Stochastic Gradient Descent (SGD) with step length α_{k}

Convex random problems (type 1): obj fun error vs time

Convex random problems (type 2)

$$
\begin{gathered}
\phi(\boldsymbol{x})=\sum_{i=1}^{n} \lambda_{i}\left(e^{x_{i}}-x_{i}\right)+(\boldsymbol{x}-\mathbf{1})^{\top} A(\boldsymbol{x}-\mathbf{1}) \\
A=V D V^{T}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad V=\left(I-2 \boldsymbol{v}_{3} \boldsymbol{v}_{3}^{T}\right)\left(I-2 \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{T}\right)\left(I-2 \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}\right) \\
\boldsymbol{v}_{j} \text { random, }\left\|\boldsymbol{v}_{j}\right\|=1
\end{gathered}
$$

- $n=2 \cdot 10^{4}, \kappa=10^{2}, 10^{3}, 10^{4}$
- $\sigma=0.1 \% \kappa, 0.5 \% \kappa, 1 \% \kappa$
- Hessian in factorized form \Longrightarrow (noisy) Newton system must be solved inexactly (e.g., by CG)

Convex random problems (type 2)

$$
\begin{gathered}
\phi(\boldsymbol{x})=\sum_{i=1}^{n} \lambda_{i}\left(e^{x_{i}}-x_{i}\right)+(\boldsymbol{x}-\mathbf{1})^{\top} A(\boldsymbol{x}-\mathbf{1}) \\
A=V D V^{T}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad V=\left(I-2 \boldsymbol{v}_{3} \boldsymbol{v}_{3}^{T}\right)\left(I-2 \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{T}\right)\left(I-2 \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}\right) \\
\boldsymbol{v}_{j} \text { random, }\left\|\boldsymbol{v}_{j}\right\|=1
\end{gathered}
$$

- $n=2 \cdot 10^{4}, \kappa=10^{2}, 10^{3}, 10^{4}$
- $\sigma=0.1 \% \kappa, 0.5 \% \kappa, 1 \% \kappa$
- Hessian in factorized form \Longrightarrow (noisy) Newton system must be solved inexactly (e.g., by CG)

Comparison of

- LSOS ("exact" solution of noisy Newton systems - CG tolerance 1e-6)
- LSOS-I (inexact solution of noisy Newton systems - decreasing tolerance sequence)
- SGD-LS (SGD with line search)

Convex random problems (type 2): obj fun error vs time

Outline

(1) Problem, motivations and contribution
2) The LSOS framework
(3) Numerical experiments with LSOS

4 Specializing LSOS for finite sums
(5) Numerical experiments with LSOS-BFGS

6 Conclusions and future work

The finite sum case

$$
\phi(\boldsymbol{x})=\frac{1}{N} \sum_{i=1}^{N} \phi_{i}(\boldsymbol{x})
$$

$\phi_{i}(\boldsymbol{x}) \in \mathcal{C}^{2} \bar{\mu}$-strongly convex, with Lipschitz-continuous gradient with constant \bar{L}

The finite sum case

$$
\phi(\boldsymbol{x})=\frac{1}{N} \sum_{i=1}^{N} \phi_{i}(\boldsymbol{x})
$$

$\phi_{i}(\boldsymbol{x}) \in \mathcal{C}^{2} \bar{\mu}$-strongly convex, with Lipschitz-continuous gradient with constant \bar{L}

Subsampling: at each iter k, a sample \mathcal{N}_{k} of size $N_{k} \ll N$ is chosen randomly and uniformly from $\mathcal{N}=\{1, \ldots, N\}$:

$$
\begin{gathered}
f_{\mathcal{N}_{k}}(\boldsymbol{x})=\frac{1}{N_{k}} \sum_{i \in \mathcal{N}_{k}} \phi_{i}(\boldsymbol{x}), \quad \boldsymbol{g}_{\mathcal{N}_{k}}(\boldsymbol{x})=\frac{1}{N_{k}} \sum_{i \in \mathcal{N}_{k}} \nabla \phi_{i}(\boldsymbol{x}) \\
B_{\mathcal{N}_{k}}(\boldsymbol{x})=\frac{1}{N_{k}} \sum_{i \in \mathcal{N}_{k}} \nabla^{2} \phi_{i}(\boldsymbol{x})
\end{gathered}
$$

(unbiased estimators of $\phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x})$ and $\nabla^{2} \phi(\boldsymbol{x})$)

Stochastic variant of L-BFGS

Hessian approximation from stochastic variant of Limited-memory BFGS (L-BFGS) [Byrd, Hansen, Nocedal \& Singer, SIOPT 2016]
H_{k} defined by applying m BFGS updates to an initial matrix, using the m most recent correction pairs $\left(\boldsymbol{s}_{j}, \boldsymbol{y}_{j}\right)$ obtained averaging iterates over r steps $(j=k / r)$:

$$
\begin{aligned}
& H_{k}=H_{k}^{(m)}, \quad \text { where } \quad H_{k}^{(0)}=\frac{s_{m}^{\top} \boldsymbol{y}_{m}}{\left\|\boldsymbol{y}_{m}\right\|^{2}} I \\
& H_{k}^{(j)}=\left(I-\frac{s_{j} \boldsymbol{y}_{j}^{\top}}{s_{j}^{\top} \boldsymbol{y}_{j}}\right)^{\top} H_{k}^{(j-1)}\left(I-\frac{y_{j} s_{j}^{\top}}{s_{j}^{\top} \boldsymbol{y}_{j}}\right)+\frac{s_{j} s_{j}^{\top}}{s_{j}^{\top} \boldsymbol{y}_{j}}, \quad j=1, \ldots, m
\end{aligned}
$$

$$
\begin{array}{r}
\boldsymbol{s}_{j}=\boldsymbol{w}_{j}-\boldsymbol{w}_{j-1}, \quad \boldsymbol{y}_{j}=B \mathcal{T}_{j}\left(\boldsymbol{w}_{j}\right) \boldsymbol{s}_{j}, \quad \mathcal{T}_{j} \subset\{1, \ldots, N\} \\
\boldsymbol{w}_{j}=\frac{1}{r} \sum_{i=k-r+1}^{k} \boldsymbol{x}_{i}, \quad \boldsymbol{w}_{j-1}=\frac{1}{r} \sum_{i=k-2 r+1}^{k-r} \boldsymbol{x}_{i}
\end{array}
$$

Mini-batch SAGA

Subsampled gradient estimate by a a mini-batch variant of SAGA
[Defazio, Bach \& Lacoste-Julien, NIPS 2014; Gower, Richtárik \& Bach, Math Prog 2020]

$$
\begin{aligned}
& g_{\mathcal{N}_{k}}^{\mathrm{SAGA}}\left(\boldsymbol{x}_{k}\right)=\frac{1}{N_{k}} \sum_{i \in \mathcal{N}_{k}}\left(\nabla \phi_{i}\left(\boldsymbol{x}_{k}\right)-J_{k}^{(i)}\right)+\frac{1}{N} \sum_{r=1}^{N} J_{k}^{(r)} \\
& J_{k+1}^{(i)}=\left\{\begin{array}{cc}
J_{k}^{(i)} & \text { if } i \notin \mathcal{N}_{k} \\
\nabla \phi_{i}\left(\boldsymbol{x}_{k+1}\right) & \text { if } i \in \mathcal{N}_{k}
\end{array}, \quad J_{0}^{(i)}=\nabla \phi_{i}\left(\boldsymbol{x}_{0}\right)\right.
\end{aligned}
$$

$\{1, \ldots, N\}$ partitioned into a fixed number n_{b} of random mini-batches, which are used in order

Advantage of SAGA over SVRG: full gradient computation only at the beginning of the algorithm (SVRG: full gradient computation each n_{b} iterations)

LSOS-BFGS: Finite-Sum LSOS with L-BFGS

```
LSOS-BFGS
    1: given }\mp@subsup{\boldsymbol{x}}{0}{}\in\mp@subsup{\mathbb{R}}{}{n},m,r\in\mathbb{N},\eta,\vartheta\in(0,1
    2: for }k=0,1,2,\ldots\mathrm{ do
    3: compute a partition {\mathcal{K}
```

13: end for

LSOS-BFGS: Finite-Sum LSOS with L-BFGS

LSOS-BFGS
1: given $\boldsymbol{x}_{0} \in \mathbb{R}^{n}, m, r \in \mathbb{N}, \eta, \vartheta \in(0,1)$
2: for $k=0,1,2, \ldots$ do
3: compute a partition $\left\{\mathcal{K}_{0}, \mathcal{K}_{1}, \ldots, \mathcal{K}_{n_{b}-1}\right\}$ of $\{1, \ldots, N\}$
4: \quad for $s=0, \ldots, n_{b}-1$ do
5: \quad choose $\mathcal{N}_{k}=\mathcal{K}_{s}$ and compute $\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)=\boldsymbol{g}_{\mathcal{N}_{k}}^{\mathrm{SAGA}}\left(\boldsymbol{x}_{k}\right)$
6: compute $\boldsymbol{d}_{k}=-H_{k} \boldsymbol{g}\left(\boldsymbol{x}_{k}\right)$ with H_{k} defined by stochastic L-BFGS

13: end for

LSOS-BFGS: Finite-Sum LSOS with L-BFGS

```
LSOS-BFGS
    1: given \(\boldsymbol{x}_{0} \in \mathbb{R}^{n}, m, r \in \mathbb{N}, \eta, \vartheta \in(0,1)\)
    2: for \(k=0,1,2, \ldots\) do
    3: compute a partition \(\left\{\mathcal{K}_{0}, \mathcal{K}_{1}, \ldots, \mathcal{K}_{n_{b}-1}\right\}\) of \(\{1, \ldots, N\}\)
    4: \(\quad\) for \(s=0, \ldots, n_{b}-1\) do
    5: \(\quad\) choose \(\mathcal{N}_{k}=\mathcal{K}_{s}\) and compute \(\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)=\boldsymbol{g}_{\mathcal{N}_{k}}^{\mathrm{SAGA}}\left(\boldsymbol{x}_{k}\right)\)
    6: \(\quad\) compute \(\boldsymbol{d}_{k}=-H_{k} \boldsymbol{g}\left(\boldsymbol{x}_{k}\right)\) with \(H_{k}\) defined by stochastic L-BFGS
        find a step length \(t_{k}\) such that
                        \(f_{\mathcal{N}_{k}}\left(\boldsymbol{x}_{k}+t_{k} \boldsymbol{d}_{k}\right) \leq f_{\mathcal{N}_{k}}\left(\boldsymbol{x}_{k}\right)+\eta t_{k} \boldsymbol{g}\left(x_{k}\right)^{\top} \boldsymbol{d}_{k}+\vartheta^{k}\)
    8: \(\quad\) set \(\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+t_{k} \boldsymbol{d}_{k}\);
    9: \(\quad\) if \(\bmod (k, r)=0\) and \(k \geq 2 r\) then
10: update the L-BFGS correction pairs
11: end if
12: end for
13: end for
```


FS-LSOS: convergence

Theorem (convergence)
Assume $\left\{t_{k}\right\}$ is bounded away from zero. Then $\left\{\boldsymbol{x}_{k}\right\}$ converges a.s. to the unique minimizer of ϕ.

FS-LSOS: convergence

Theorem (convergence)

Assume $\left\{t_{k}\right\}$ is bounded away from zero. Then $\left\{\boldsymbol{x}_{k}\right\}$ converges a.s. to the unique minimizer of ϕ.

Theorem (convergence rate)

Let $\left\{t_{k}\right\}$ be bounded away from zero. Then there exist $\rho \in(0,1)$ and $C>0$ such that

$$
\mathbb{E}\left(\phi\left(\boldsymbol{x}_{k}\right)-\phi\left(\boldsymbol{x}_{*}\right)\right) \leq C \rho^{k}
$$

Theorem (complexity bound)
In order to achieve $\mathbb{E}\left(\phi\left(\boldsymbol{x}_{k}\right)-\phi\left(\boldsymbol{x}_{*}\right)\right) \leq \varepsilon$ for some $\varepsilon \in\left(0, e^{-1}\right)$, LSOS-FS takes at most

$$
k_{\max }=\left\lceil\frac{|\log (C)|+1}{|\log (\rho)|} \log \left(\varepsilon^{-1}\right)\right\rceil=\mathcal{O}\left(\log \left(\varepsilon^{-1}\right)\right)
$$

with $\rho \in(0,1)$ and $C>0$.

Outline

(1) Problem, motivations and contribution
(2) The LSOS framework
(3) Numerical experiments with LSOS

4 Specializing LSOS for finite sums
(5) Numerical experiments with LSOS-BFGS

6 Conclusions and future work

Linear classification problems

Training a linear classifier by minimizing the ℓ_{2}-regularized logistic regression
Given N pairs $\left(\boldsymbol{a}_{i}, b_{i}\right), \boldsymbol{a}_{i} \in \mathbb{R}^{n}$ training point, $b_{i} \in\{-1,1\}$ corresponding label, a hyperplane approximately separating the two classes can be found by minimizing

$$
\phi(\boldsymbol{x})=\frac{1}{N} \sum_{i=1}^{N} \phi_{i}(\boldsymbol{x}), \quad \text { with } \phi_{i}(\boldsymbol{x})=\log \left(1+e^{-b_{i} \boldsymbol{a}_{i}^{\top} \boldsymbol{x}}\right)+\frac{\mu}{2}\|\boldsymbol{x}\|^{2}, \mu>0
$$

Linear classification problems

Training a linear classifier by minimizing the ℓ_{2}-regularized logistic regression
Given N pairs $\left(\boldsymbol{a}_{i}, b_{i}\right), \boldsymbol{a}_{i} \in \mathbb{R}^{n}$ training point, $b_{i} \in\{-1,1\}$ corresponding label, a hyperplane approximately separating the two classes can be found by minimizing

$$
\phi(\boldsymbol{x})=\frac{1}{N} \sum_{i=1}^{N} \phi_{i}(\boldsymbol{x}), \quad \text { with } \phi_{i}(\boldsymbol{x})=\log \left(1+e^{-b_{i} \boldsymbol{a}_{i}^{\top} \boldsymbol{x}}\right)+\frac{\mu}{2}\|\boldsymbol{x}\|^{2}, \quad \mu>0
$$

Note that

$$
\nabla \phi_{i}(\boldsymbol{x})=\frac{1-z_{i}(\boldsymbol{x})}{z_{i}(\boldsymbol{x})} b_{i} \boldsymbol{a}_{i}+\mu \boldsymbol{x}, \quad \nabla^{2} \phi_{i}(\boldsymbol{x})=\frac{z_{i}(\boldsymbol{x})-1}{z_{i}^{2}(\boldsymbol{x})} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}+\mu I, \quad z_{i}(\boldsymbol{x})=1+e^{-b_{i} \boldsymbol{a}_{i}^{\top}}
$$

$$
\Downarrow
$$

$\phi_{i} \mu$-strongly convex, $\quad \mu I \preceq \nabla^{2} \phi_{i}(\boldsymbol{x}) \preceq L I, \quad L=\mu+\max _{i=1, \ldots, N}\left\|a_{i}\right\|^{2}$

Linear classification problems (cont'd)

LIBSVM datasets (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/)

name	N	n
covtype	406709	54
w8a	49749	300
epsilon	400000	2000
gisette	6000	5000
real-sim	50617	20958
rcv1	20242	47236

NOTE: $\mu=1 / N$, sample size $=\lceil\sqrt{N}\rceil$

Linear classification problems (cont'd)

LIBSVM datasets (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/)

name	N	n
covtype	406709	54
w8a	49749	300
epsilon	400000	2000
gisette	6000	5000
real-sim	50617	20958
rcv1	20242	47236

NOTE: $\mu=1 / N$, sample size $=\lceil\sqrt{N}\rceil$
Comparison between

- LSOS-BFGS, with $m=10$ and $r=5$
- GGR [Gower, Goldfarb \& Richtárik, Proc ICML 2016]
- MNJ [Moritz, Nishihara \& Jordan, Proc MLR 2016]
- Mini-batch variant of SAGA, with the same line search as LSOS-BFGS

Classification problems: obj fun error vs time

Classification problems: obj fun error vs time

Outline

(1) Problem, motivations and contribution
2) The LSOS framework
(3) Numerical experiments with LSOS

4 Specializing LSOS for finite sums
(5) Numerical experiments with LSOS-BFGS
(6) Conclusions and future work

Conclusions and future work

- We introduced LSOS a flexible second-order framework for optimization in noisy environments
- Almost sure convergence holds for the sequences generated by all the LSOS variants
- For finite-sum problems, we proved linear convergence rate on the obj. fun. error and worst-case complexity bound $\mathcal{O}\left(\log \left(\varepsilon^{-1}\right)\right)$ for LSOS with stochastic L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are used

Conclusions and future work

- We introduced LSOS a flexible second-order framework for optimization in noisy environments
- Almost sure convergence holds for the sequences generated by all the LSOS variants
- For finite-sum problems, we proved linear convergence rate on the obj. fun. error and worst-case complexity bound $\mathcal{O}\left(\log \left(\varepsilon^{-1}\right)\right)$ for LSOS with stochastic L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are used
- Numerical experiments confirm that line-search techniques in second-order stochastic methods yield a significant improvement over predefined step-length sequences
- For finite sum problems LSOS-BFGS highly competitive with state-of-the art second-order stochastic optimization methods

Conclusions and future work

- We introduced LSOS a flexible second-order framework for optimization in noisy environments
- Almost sure convergence holds for the sequences generated by all the LSOS variants
- For finite-sum problems, we proved linear convergence rate on the obj. fun. error and worst-case complexity bound $\mathcal{O}\left(\log \left(\varepsilon^{-1}\right)\right)$ for LSOS with stochastic L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are used
- Numerical experiments confirm that line-search techniques in second-order stochastic methods yield a significant improvement over predefined step-length sequences
- For finite sum problems LSOS-BFGS highly competitive with state-of-the art second-order stochastic optimization methods
- What's next? Possible extension to problems not satisfying the strong convexity assumption and to constrained problems

Thanks for the attention! Any questions?

Do you want to know more?
D. di Serafino, N. Krejić, N. Krklec Jerinkić, M. Viola, LSOS: Line-search Second-Order Stochastic optimization methods, submitted (also available on ArXiv and Optimization Online)

