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Supervised Biochemical Modelling

http://bio-hpc.eu/research-lines/qsar/



Support Vector Machines — Soft-margin

The SVM solves a problem of finding a

classification model in a form of

maximal-margin hyperplane such that

H = 〈w,x〉+ b, (1)

where w is a normal vector of hyperplane H

and b is its bias alongside origin. The points

which lies on geometric margin

〈w,x〉+ b = ±1 are called support vectors.

Class A Class B

w
T x + b = 0w

T x + b = 1

w
T x + b = -1

2
||w||

b
||w||

w

Feature #1

Fe
at

ur
e 

#2

-



Support Vector Machines — Soft-margin

The problem of finding the hyperplane can be formulated as a constrained optimization

problem in the following primal formulation:

arg min
w, b, ξi

1

2
〈w,w〉+ C

m∑
i=1

ξi s.t.

 yi (〈w,xi 〉 − b) ≥ 1− ξi ,

ξi ≥ 0, i ∈ {1, 2, . . . ,m},
(2)

where ξi := max (0, 1− [〈w,xi 〉 − b]) is hinge loss function quantifies error between

current and correct classification of sample xi .

The variable C ∈ R+ is a penalty that penalizes misclassification error.

The value of C is user-defined or determined using hyperparameter optimization

(HyperOpt) techniques, e.g. grid-search combined with cross-validation.



Support Vector Machines — Soft-margin

Exploiting the Lagrange duality and evaluating Karush-Kuhn-Tucker conditions, we

transform (2) into the dual formulation so that

arg min
α

1

2
αTY TKY α−αTe s.t.

 o ≤ α ≤ Ce,

Beα = 0,
(3)

where e = [1, 1, . . . , 1]T , o = [0, 0, . . . , 0]T , X = [x1, x2, . . . ,xm],

y = [y1, y2, . . . , ym]T , Y = diag(y), Be =
[
yT
]
; K ∈ Rm×m is Symmetric Positive

Semi-definite (SPS) matrix such that K := XTX. The formulation (3) is called

l1-loss SVM.



Support Vector Machines — Soft-margin

Further, we introduce dual to primal reconstruction formulas for the normal vector

w = XY α, (4)

and the bias

b =
1

card(J)

(
XT

∗J w − yJ
)
eTJ , (5)

where J = {i | 0 < αi < C , i = 1, 2, . . . , k} is the support vector index set, card(J)

presents its cardinality, X∗J denotes the submatrix of the matrix X with the column

indices belonging to J; yJ and eJ are subvectors of the vectors y and e, respectively.

Using the reconstructed normal vector w and bias b, we set the decision rule up so that

sgn (〈w,xi 〉+ b) =

 +1 . . .xi belongs to Class A,

−1 . . .xi belongs to Class B.
(6)



Support Vector Machines — Hessian regularization

Instead of linear sum of the loss functions ξi , let us substitute it by sum of squared loss

functions in the objective such (3) results into following form

arg min
w, b, ξi

1

2
〈w,w〉+

C

2

m∑
i=1

ξ2
i s.t.

 yi (〈w,xi 〉+ b) ≥ 1− ξi ,

i ∈ {1, 2, . . . ,m}.
(7)

The formulation (7) is called a primal l2-loss SVM. By exploiting this approach, we

can observe the term that quantifies misclassification error

m∑
i=1

ξ2
i ≥ 0,

therefore we do not consider ξi > 0 as constraint.



Support Vector Machines — Hessian regularization

As for the l1-loss SVM, we derive dual formulation using the Lagrange duality, and,

evaluating the KKT conditions, the primal formulation (7) transforms into the dual

formulation as follows

arg min
α

1

2
αT

(
H + C−1I

)
α−αTe s.t.

  ≤ α,

Beα = .
(8)

Since the Hessian is regularized by matrix C−1I, it becomes symmetric positive

definite (SPD). Finally, we adapt the support vector index set J such that

J = {i | 0 < αi , i = 1, 2, . . . , k} for the reconstruction formulas (4), (5).



Support Vector Machines – No-bias data classification

In the case of the no-bias classification, we do not consider bias b in a classification

model.

We include it into the problem by means of augmenting the vector w and each sample

xi with an additional dimension such that

ŵ ←

[
w

B

]
, x̂i ←

[
xi
β

]
,

where B ∈ R, and β ∈ R+ is a user defined variable that (typically set to 1).



Support Vector Machines – No-bias data classification

Let p ∈ {1, 2}, then, using augmented samples x̂i , i = 1, 2, . . . ,m and vector ŵ, we

can modify the both primal SVM formulations, i.e. (2) and (7), into the problem of

finding hyperplane Ĥ := 〈ŵ, x̂〉 as follows

arg min
ŵ, ξ̂i

1

2
〈ŵ, ŵ〉+

C

p

m∑
i=1

ξ̂pi s.t.

 yi 〈ŵ, x̂i 〉 ≥ 1− ξ̂i ,

ξ̂i ≥ 0 if p = 1, i ∈ {1, 2, . . . ,m},
(9)

where ξ̂i = max (0, 1− yi 〈ŵ, x̂i 〉) is the hinge loss function releated to augmented

samples x̂i .



Support Vector Machines — Model calibration

Platt proposed approximating a posterior probability by a parametric form of a sigmoid

function such that

P (y = 1 | x) ≈ PA,B (y = 1 | x) =
1

1 + exp (Af (x) + B)
, (10)

where parameters A, B are fitted using maximum likehood estimation.

The model (10) assumes the raw SVM output f (x) := H (x) = 〈w , x〉+ b.

In order to no-bias classification, we define f̂ (x̂) := Ĥ (x̂) = 〈ŵ , x̂〉.

To avoid model overfitting, Platt suggested to use a new training set, i.e. calibration

set, for training a calibrated model.



Support Vector Machines — Model calibration

Let us denote calibration dataset as an ordered set as follows

CA := {(f1, y1) , (f2, y2) , . . . (fl , yl)},

where l is a number of the calibration samples, fj is estimate of f (xj) or f̂
(
x̂j
)
,

j ∈ {1, 2, . . . , l}.

Additionally, Platt proposed transformation of binary labels yj to target probabilities tj

such that tj =
Np+1
Np+2 iff y = +1, or tj = 1

Nn+2 iff y = −1, where Np and Nn are

numbers of positive and negative calibration samples, respectively.



Support Vector Machines — Model calibration

The best parameter setting, i.e. A∗ and B∗, is determined by minimizing cross-entropy

so that

arg min
A,B

−
l∑

j=1

[ tj log (pj) + (1− tj) log (1− pj) ] , (11)

where pj = 1
1+exp(Afj+B)

. To solve (11), Hsuan-Tien Lin et. all propose the Newton

method.



PermonSVM — Features

Features:

• Uses PETSc and PermonQP

• Bias and no-bias formulations

• User defined penalty for unbalanced datasets (C+ and C−)

• Cross validation:

• k-fold

• Stratified k-fold

• Grid search

• Model score (accuracy, sensitivity, specifity, F1, MCC)

• Datasets - training, test, calibration

• Parallel IO (LIBSVM, HDF5, PETSc binary)



PermonSVM — Calling API

MPI_comm comm = PETSC_COMM_WORLD;
SVM svm;
PetscViewer viewer;

Mat Xt_test ,Y_test ,Y_pred;

char file_training[PETSC_MAX_PATH_LEN] = "examples/heart_scale.tr.h5";
char file_test[PETSC_MAX_PATH_LEN] = "examples/heart_scale.te.h5";
char file_calibration[PETSC_MAX_PATH_LEN] = "examples/heart_scale.ca.h5";

TRY( SVMCreate(comm ,&svm) );
TRY( SVMSetType(svm ,SVMPC) );
TRY( SVMSetFromOptions(svm) );
TRY( PetscViewerHDF5Open(comm ,file_training ,FILE_MODE_READ ,& viewer) );
TRY( PetscViewerHDF5SetAIJNames(viewer ,"i","j","a","ncols") );
TRY( SVMLoadTrainingDataset(svm ,viewer) );
TRY( PetscViewerDestroy (& viewer) );

TRY( PetscViewerHDF5Open(comm ,file_test ,FILE_MODE_READ ,& viewer) );
TRY( PetscViewerHDF5SetAIJNames(viewer ,"i","j","a","ncols") );
TRY( SVMLoadTestDataset(svm ,viewer) );
TRY( PetscViewerDestroy (& viewer) );

TRY( PetscViewerHDF5Open(comm ,file_calibration ,FILE_MODE_READ ,& viewer) );
TRY( PetscViewerHDF5SetAIJNames(viewer ,"i","j","a","ncols") );
TRY( SVMLoadCalibDataset(svm ,viewer) );
TRY( PetscViewerDestroy (& viewer) );

TRY( SVMSetHyperOpt(svm ,PETSC_TRUE) );
TRY( SVMTrain(svm) );
TRY( SVMTest(svm) );



Benchmarks – Balancing predictive relevance

We demonstrate technique of calibrating models related to Active-vs-Inactive no-bias

classification on 3 targets.

Target (dataset) #ligands (QSARs) #active+ #inactive-

abl1 (training) 640 312 328

abl1 (calibration) 200 92 108

abl1 (test) 160 81 79

adora2a (training) 640 343 297

adora2a (calibration) 200 105 95

adora2a (test) 160 95 65

cnr1 (training) 640 392 248

cnr1 (calibration) 200 123 77

cnr1 (test) 160 110 50



Benchmarks – Balancing predictive relevance

For training (uncalibrated) classification models, we choose the best penalty CBE from

the set Ĉ = {2p, p ∈ {−7,−6, . . . , 6, 7}} algorithmically employing the HyperOpt by

means of grid-search combined with stratified 3-fold CV.

The relative norm of projected gradient being smaller than 1e − 1 is used as stopping

criterion for the MPRGP (Modified Proportioning and Reduced Gradient Projection)

algorithm in all presented experiments. The expansion step-size is fixed and

determined such as α = 2.0/‖H‖2, where ‖H‖2 =
√
λmax (HTH).

Using PETSc implementation of the Newton method, the S-shaped calibration

function is computed by minimizing cross-entropy of calibration data.

We use a deterministic approach instead of stochastic optimization.



Benchmarks – Balancing predictive relevance

Table 1: abl1, adora2a, cnr1 targets: evaluation of performance scores associated with

uncalibrated models with CBE and calibrated models with optimal threshold (thr.) in a sense of

labels (binary classification) on test datasets.

Target Loss
Uncalibrated model Calibrated model

CBE Pre. [%] Sen. [%] AUC Thr. Pre. [%] Sen. [%] AUC

abl1
l1 2−6 71.60 65.17 0.66 0.52 65.43 64.63 0.64

l2 2−5 69.14 60.22 0.64 0.54 60.49 60.49 0.60

adora2a
l1 2−6 70.53 82.72 0.74 0.41 78.95 78.95 0.74

l2 2−7 70.53 83.75 0.74 0.44 78.95 78.95 0.74

cnr1
l1 2−6 90.00 82.50 0.77 0.63 83.64 83.64 0.74

l2 2−6 87.27 81.36 0.74 0.58 83.64 83.64 0.74

cnr2
l1 2−6 83.93 82.46 0.83 0.53 83.04 83.04 0.72

l2 2−5 86.61 82.91 0.85 0.53 83.93 83.93 0.73



Benchmarks – Balancing predictive relevance

Table 2: abl1, adora2a, cnr1, cnr2 calibrated single-target models: comparing quality of

models in probabilistic sense (Brier score).

Target Loss Brier score

abl1
l1 0.1105

l2 0.0947

adora2a
l1 0.1280

l2 0.1222

cnr1
l1 0.0905

l2 0.0710

cnr2
l1 0.0889

l2 0.0611

The models trained using l2-loss seem to be better calibrated by comparing Brier

scores for all cases than ones related to the l1-loss SVM. This could a consequence of

underlying model robustness.



Benchmarks – Balancing predictive relevance

Table 3: abl1, adora2a, cnr1, cnr2 biological targets: elapsed time related to training of

models including HyperOpt and calibration.

Loss

Elapsed time [s]

(HyperOpt + Training + Calibration)

abl1 adora2a cnr1 cnr2

l1 2.15 2.61 1.95 2.57

l2 1.38 1.86 1.57 1.58

We can observe speedups 1.56 (abl1), 1.40 (adora2a), 1.24 (cnr2), and 1.62 (cnr1) in

order to using the l2-loss SVM against the l1-loss SVM.



Conclusions

• Advantage of SVMs: finding a learning function maximizing geometric margin.

• Disadvantages of SVMs: sensitivity to imbalanced datasets, outliers and

multicollinearies among training samples, which could be a cause of preferencing

one group over another.

• Additional calibrationing a model is required – Platt’s Calibration was tested.

• To obtain better calibrated model (Brier score), it seems it is better to train

model using l2-loss SVM.

• Testing approach on large-scale dataset.

• Comparing Platt’s scaling with isotonic regression.



Thank you for your kind patience and attention. Any questions?


