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Optimization problem in machine learning

The problem we consider is the unconstrained minimization of the
form

min
x

F (x) = E[f (x , ξ)]

where ξ is a multi-value random variable and f represents the cost
function.
We haven’t complete information about the probability distribution
of ξ. In practice, we seek the solution of a problem that involves an
estimate of the objective function F (x).
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Optimization problem in machine learning

For example: minimize the sum of cost functions depending on a
finite training set, composed by sample data ξi , i ∈ {1 . . . n}:

min
x

Fn(x) =
1
n

n∑
i=1

f (x , ξi ) =
1
n

n∑
i=1

fi (x),

where n is the size of the training set and each fi (x) ≡ f (x , ξi )
denotes the cost function related to the instance ξi of the training
set elements.

3 / 33



On the steplength selection in Stochastic Gradient Methods

Introduction
Selections based on the Ritz-like values
Mini-batch size
Numerical experiments
Conclusions and future works

Stochastic Gradient (SG)

For very large training set, the computation of Fn(x) and ∇Fn(x) is
prohibited and Stochastic Gradient (SG) method and its variants
have been chosen as the main approaches to address the problem.

Algorithm 1 Stochastic Gradient (SG) method

1: Choose an initial iterate x1.
2: for k = 1, 2, . . . do
3: Generate a realization of the random variable ξk .
4: Compute a stochastic gradient g(xk , ξk).
5: Choose a learning rate ηk > 0.
6: Set the new iterate as xk+1 ← xk − ηkg(xk , ξk).
7: end for
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How to compute g(xk , ξk)

In particular, we point out two different strategies for the choices of ξk
and g(xk , ξk):

simple SG: a realization of ξk may be given by the choice of a
single sample element, or, in other words, a random index ik is
chosen from {1, 2, . . . , n} and the stochastic gradient is defined as

g(xk , ξk) = ∇fik (xk),

where ∇fik (xk) denotes the gradient of the ik -th component
function at xk ;

mini-batch: the random variable ξk may represents a small subset
Sk ⊂ {1, ..., n} of samples, randomly chosen at each iteration, so
that the stochastic gradient is defined as

g(xk , ξk) =
1
|Sk |

∑
i∈Sk

∇fi (xk).
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Stochastic Gradient with Momentum

Algorithm 2 Momentum

1: Choose maxit, η, β ∈ [0, 1), x0;
2: initialize m0 ← 0, t ← 0
3: for t ∈ {0, . . . ,maxit} do
4: t ← t + 1
5: gt ← ∇fit (xt−1)
6: mt ← β ·mt−1 + gt
7: xt ← xt−1 − ηt ·mt

8: end for
9: Result: xt
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Kingma, Lei Ba, Adam: a method for stochastic
optimization, ArXiv, 2017

Algorithm 3 Adam

1: Choose maxit, η, ε, β1 and β2 ∈ [0, 1), x0;
2: initialize m0 ← 0, v0 ← 0, t ← 0
3: for t ∈ {0, . . . ,maxit} do
4: t ← t + 1
5: gt ← ∇fit (xt−1)
6: mt ← β1 ·mt−1 + (1− β1) · gt
7: vt ← β2 · vt−1 + (1− β2) · g2

t

8: ηt = η

√
1−βt

2
(1−βt

1)

9: xt ← xt−1 − ηt ·mt/(
√
vt + ε̂)

10: end for
11: Result: xt
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Stochastic versus deterministic

Numerical evidence shows very real advantages of SG with respect
to a full gradient or other deterministic methods within the early
epochs.
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Theoretical results

Under a set of suitable assumptions on the smoothness of F and on
the first and second moments of the stochastic directions
{g(xk , ξk)}, and on the steplength selection

0 < ηmin ≤ ηk ≤ ηmax ≤
ν

L

where L is the Lipschitz constant of the gradient and ν is a
constant depending on the first and second moments of the
stochastic process, we have that

E[F (xk)− F∗]
k→∞−−−→ ηmax

L
c γ

where c is the strongly convexity constant of the function F (x)
and γ is again a constant depending on first and second moments
of the stochastic process [Bottou et al, 2018].
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Theoretical results

Under the same assumptions but without convexity, we have that

E
[
‖ ∇F (xk) ‖22

] k→∞−−−→ ηmaxLγ̄.

where γ is again a constant depending on first and second
moments of the stochastic process [Bottou et al, 2018].
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Limitation of the method

This result shows that if the steplength is sufficiently small, then the
expected objective values will converge to a neighborhood of the
optimal value;

in practice, since the constants related to the assumptions, such as
the Lipschitz parameter, or the parameters involved in the bounds of
the moments of the stochastic directions, are unknown and not easy
to approximate, the steplength is selected as a fixed small value η;

nevertheless, a too small steplength can give rise to a very slow
learning process;

for this reason, in [Sopyla et al, 2015; Tan et al, 2016] rules for an
adaptive selection of the steplength have been proposed.

Contribution of my work: the steplength selection rule adopted in the
limited memory gradient projection method [Fletcher, 2012] has been
tailored to the SG framework.
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Beyond the method limitations

In literature can be found two different approaches to solve the
method limitations:

Choose an appropriate steplenth
Increase the mini-batches size

The two strategies have been addressed in my work, both
separately and jointly.
[Franchini at al. (2018)Artificial Neural Networks: the missing link between curiosity and accuracy,

Advances in Intelligent Systems and Computing, vol 941, Springer 2018]

[Franchini, Ruggiero, Zanni (2020) On the Steplength Selection in Stochastic Gradient Methods,

Numerical Computations: Theory and Algorithms. vol 11973. Springer]

[Franchini, Ruggiero, Zanni (2020) Ritz-like values in steplength selections for stochastic gradient

methods, Soft Computing]
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Deterministic case in a nutshell

In the strictly convex quadratic case,

f (x) =
1
2
xTAx − bT x

in order to capture second order information of the considered
problem, the steplengths are defined as the inverse of suitable
approximations of the eigenvalues of the Hessian matrix, given
by its Ritz values;
the key point is to obtain the Ritz values in an inexpensive way;
the basic idea is to divide the sequence of iterations into
groups of mR iterations referred to as sweeps, where mR is a
small positive integer, and to compute the steplengths for each
sweep as the inverse of some Ritz values of the Hessian matrix
A, computed by exploiting the gradients of the previous sweep.
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How to compute Ritz values

At the iteration k ≥ mR , where mR is a little integer, we denote by
G and J the matrices obtained collecting mR gradient vectors
computed at previous iterates and the related steplengths:

G = [gk−mR
, . . . , gk−1] , J =


η−1
k−mR

−η−1
k−mR

. . .

. . . η−1
k−1
−η−1

k−1

 ,

from the recurrent formula:

gi = gi−1 − ηi−1Agi−1, i ≥ 0

we can write
AG = [G , gk ]J.
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Tridiagonal matrix

AG = [G , gk ]J.

This equation is useful to compute the tridiagonal matrix T
resulting from the application of mR iterations of the Lanczos
process to the matrix A, with starting vector
q1 = gk−mR

/ ‖ gk−mR
‖; this procedure generates an orthogonal

matrix Q = [q1, . . . , qmR
], whose columns are a basis for the Krylov

subspace {gk−mR
,Agk−mR

,A2gk−mR
, ...,AmR−1gk−mR

}, such that

T = QTAQ

with T ∈ RmR×mR .
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How to use pseudo Ritz values as steplength

The steplengths for the next mR gradient iterations are defined as
the inverse of the eigenvalues θi of T , that are the so-called Ritz
values:

ηk−1+i =
1
θi
, i = 1, . . . ,mR .

Procedure to avoid the explicit computation of Q:

⇒
G = QR ⇒ RTR = GTG

where R is upper triangular;
⇒ then the matrix T can be obtained as follows:

T = R−TGTAGR−1 = R−TGT [G , gk ]JR−1 = [R, r ]JR−1,

where the vector r is the solution of the linear system
RT r = GTgk .
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General case

AG = [G , gk ]J.

In the general case, the recurrence does not hold and the
described procedure provides an Hessenberg matrix;
in [Fletcher, 2012; Di Serafino et al., 2018] T is replaced by
T = tril(T ) + tril(T ,−1)′;
the eigenvalues θi of T tend to approximate mR eigenvalues of
the Hessian matrix.
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Harmonic Ritz values

A similar idea consists in obtaining the steplengths as the reciprocal of the
eigenvalues of T−1j Pj , where

Pj = R−T
j JT

j

(
Rj rj
0 ρj

)T (
Rj rj
0 ρj

)
JjR
−1
j =

=
(
TT

j tj
)(Tj

tTj

)
,

ρj =
√

gT
j+mgj+m − rTj rj and tj is the solution of the linear system

RT
j tj = JT

j

(
0
ρj

)
.

In QP problems, the eigenvalues of T−1j Pj (harmonic Ritz values) are
approximations of eigenvalues of the Hessian.
In general cases, replacing Tj by the non-singular tridiagonal matrix T j , a
pentadiagonal matrix P j is obtained and the eigenvalues of T

−1
j P j can be

computed (harmonic Ritz-like values).
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Stochastic Context

In the stochastic context, the implementation of this technique involves some
crucial differences:

stochastic gradients instead of full gradients in the formation of G :

G = [gk−mR (xk−mR , ξk−mR ), . . . , gk−1(xk−1, ξk−1)];

approximation of T by its symmetric part T̃ = (T + TT )/2;

steplength selection of the next sweep as follows:

ηk−i+1 = max
{
min

{
ηmax ,

1
θi

}
, ηmin

}
, i = 1, ...,mR .

where θi is an eigenvalue of T̃ ;

the thresholding procedure eliminates the negative eigenvalues and the
ones out of the interval [ηmin, ηmax ].
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A-R and AA-R versions of SG

The positive harmonic Ritz-like values generate shorter steplengths with
respect to the ones defined by the corresponding Ritz-like values.

Alternate Ritz-like values (A-R) method: simply toggle the use of the
Ritz-like values to the one of the harmonic Ritz-like values at each sweep

Adaptive Alternate Ritz-like values (AA-R) method: links the choice
between Ritz-like and harmonic Ritz-like values to the selection of the
size of the current subsample.
In particular, when at the iteration k the size of the sample increases, the
stochastic gradients previously stored are related to subsamples of lower
size; then, we discard the available Ritz-like values and we exploit the
current stored stochastic gradients to determine a set of harmonic
Ritz-like values, using shorter steplengths in this transition phase.
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Mini-batch SG based on increasing size

Recently, in [Bollagragrada, Byrd, Nocedal 2018], the norm test is
replaced by an inner product test, combined with an
orthogonality test, aimed to guarantee that the negatives of the
stochastic gradients based on subsamples of suitable size are
descent directions in expectation.

In view of the assumption

E[g
(nk )
k ] = ∇F (x (k)) ⇒ E[g

(nk )
k

T
∇F (x (k))] = ‖∇F (x (k))‖2
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Condition on the sample size

The following condition can be imposed on the sample size nk of
ξ(nk ):

E[(g (nk )
k

T
∇F (x (k))− ‖∇F (x (k))‖2)2] ≤ θ2‖∇F (x (k))‖4 inner product test

E[‖g (nk )
k −

g
(nk )
k

T
∇F (x (k))

‖∇F (x (k))‖2
∇F (x (k))‖2] ≤ ν2‖∇F (x (k))‖2 orthogonality test

for some θ, ν > 0.
The combination of the two tests is known as augmented inner
product test.

Numerical evidence highlights that the mechanism give rises to an
increase of nk slower than the one induced by the norm test.
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Pratical point of view
From the practical point of view, in view of the previously used
argument, nk has to satisfy the following conditions:

E[(∇fi (x
(k))T∇F (x(k))− ‖∇F (x(k))‖2)2]

nk
≤ θ

2‖∇F (x(k))‖4 exact variance inner product test

E[‖∇fi (x
(k))− ∇fi (x

(k))T∇F (x(k))

‖∇F (x(k))‖2 ∇F (x(k))‖2]

nk
≤ ν

2‖∇F (x(k))‖2 exact variance orthogonality test

Approximating the variance with the sample variance and the
gradient ∇F (x (k)) with a sample gradient, the conditions for nk
can be written as

∑
i∈Sk

(∇fi (x
(k))T g

(nk )

k
− ‖g (nk )

k
‖2)2

nk (nk − 1)
≤ θ

2‖g (nk )
k
‖4 approximate inner product test

∑
i∈Sk

‖∇fi (x
(k))−

∇fi (x
(k))T g

(nk )
k

‖g
(nk )
k

‖2
g
(nk )

k
‖2

nk (nk − 1)
≤ ν

2‖g (nk )
k
‖2 approximate variance orthogonality test
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Mini-batch size increasing rule

When these conditions are not satisfied by the current sample size,
the sample size is increased:

nk=min(dmax(Z1,Z2)e, n)
where

Z1=
Vari∈Sk (∇fi (x

(k))T g
(nk )
k )

θ2‖g (nk )
k ‖4

, Z2=

Vari∈Sk (∇fi (x
(k))− ∇fi (x

(k))T g
(nk )

k

‖g (nk
k

)‖2
g
(nk )
k )

ν2‖g (nk )
k ‖2
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Data-sets

In order to evaluate the effectiveness of the proposed steplength
rule for SG methods, we consider the optimization problems arising
in training binary classifiers for two well known data-sets:

the MNIST data-set of handwritten digits, commonly used for
testing different systems that process images; the images are
in gray-scale (0, 255), in our case normalized (0, 1), centered
in a box of 28× 28 pixels. The database contains 60, 000
images for the train set and 10, 000 images for the test set.
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The minimization problem

We built multi-class classifier corresponding to a loss functions
originating from a Convolutional Neural Network (CNN); a
regularization term was added to avoid overfitting. Thus the
minimization problem has the form

min
x

Fn(x) +
λ

2
‖x‖22,

where λ > 0 is a regularization parameter.
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A non-convex problem: a Convolutional Neural Network

2D Convolution 2D Convolution Dense

2D Max-Pooling 2D Max-Pooling DenseInput

Convolutional Neural Network (CNN): an input layer, two sequences of
convolutional and max-pooling layers, a fully connected layer and an output
layer, given by a Rectified Linear Unit (ReLU) activations combined by a
softmax function; the loss function is the cross entropy:

regularization parameter δ = 10−4;

the first convolutive layer is composed by 64 filters, each filter has 5× 5
dimension; after we apply a max-pooling of size 2× 2;

the second convolutive layer is composed by 32 filters, each filter has
5× 5 dimension; after we apply a max-pooling of size 2× 2
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CNN: results, SG case
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CNN Accuracy in the SG mini, |S | = 50 Accuracy obtained with A-R and AA-R
The setting of A-R and AA-R methods is:

for A-R method, αmin = 10−3, αmax = 1, n0 = 10;

for AA-R method, αmin = 10−2, αmax = 1, n0 = 3.

α is set as 0.1 in all cases.
The subsample size increases up to a maximum of 204 and 182 in A-R
and AA-R methods respectively.
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CNN: results, Momentum case

The setting for SG with momentum:
β = 0.9;
|S | = 50 subsample size.

The setting of A-R and AA-R methods is:
for A-R method, αmin = 10−3, n0 = 10;
for AA-R method, αmin = 10−3,, n0 = 10.

Table: Numerical results of the considered methods with Momentum
optimiser after 5 epochs.

α SGmom αmax A-R AA-R
0.01 0.8819 0.8 0.8783 0.9182
0.1 0.9573 0.9 0.8675 0.8829
0.5 0.9708 1 0.902 0.9269
0.9 0.0958 1.2 0.8733 0.8644
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CNN: results, AdaM case

The setting for AdaM:
β1 = 0.9 and β2 = 0.999;
ε = 1e − 8;
|S | = 50 subsample size.

The setting of A-R and AA-R methods is:
for A-R method, αmin = 10−3, n0 = 10;
for AA-R method, αmin = 10−3,, n0 = 10.

Table: Accuracies of the considered methods with AdaM optimiser after 5
epochs.

α SGAdaM αmax A-R AA-R
0.001 0.9705 0.1 0.8768 0.9061
0.01 0.9492 0.3 0.9557 0.9333
0.1 0.1148 0.5 0.8537 0.8372
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Subsample size

Table: Subsample size of the considered methods with Momentum and
AdaM optimiser after 5 epochs.

Momentum AdaM
αmax A-R AA-R αmax A-R AA-R
0.8 327 306 0.1 182 204
0.9 214 294 0.3 263 244
1 204 155 0.5 226 363
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Conclusions and future works

The deterministic procedure for obtaining the Ritz-like values is reformulated in the stochastic
framework

New adaptive subsampling strategy enables to control the variance of the stochastic directions

Two different ways to select the current steplength, by simply toggling the Ritz-like values with
the harmonic Ritz-like values (A-R method) or using the harmonic Ritz-like values only when the
size of the subsample is increased (AA-R method)

The novel methods enable to obtain an accuracy similar to the one obtained with SG mini-batch
with fixed best-tuned steplength

The approach appears sligthly dependent on the bounds imposed on the steplengths, making the
parameters setting less expensive with respect to the SG framework

The proposed technique provides a guidance on the learning rate selection and it allows to
perform similarly to the SG approach equipped with the best-tuned steplength

Combination with proximity operator?
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Thanks for your attention!
frngrg@unife.it
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