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@ Problem, motivations and contribution
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The problem

minimize o(x)

¢(x) twice continuously differentiable function in a noisy environment, i.e.
é(x), Vo(x) and V2¢(x) are only accessible with some level of noise:

f(x) = o(z) +ep(x)
g(x) = Vo(z) + g4(x)
B(z) = V’¢(z) + ep(z)

ef(x) random number, g,4(x) random vector, e g(x) symmetric random matrix
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The problem (cont'd)

The error may derive from:
@ uncertainty on data;
measurement errors;
communication errors;
computational inaccuracy (data come from a simulation);
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The problem (cont'd)

The error may derive from:
@ uncertainty on data;
@ measurement errors;
@ communication errors;
e computational inaccuracy (data come from a simulation);

Special cases:

@ mathematical expectation:

(b(w) = E§~D [U(CE’S)] ) and f(ZB) = ’U(ilt,g), with EN D
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The problem (cont'd)

The error may derive from:
@ uncertainty on data;
@ measurement errors;
@ communication errors;
e computational inaccuracy (data come from a simulation);
°

Special cases:

@ mathematical expectation:

¢($) = E§~'D [/U(:L'ué-)] } and f(w) = ’U(ZE,E), with EN D
o (large) finite sum of functions:

N
o(x) = Z@(m), and  f(z) =) ¢i(x), with S C{1,...,N}

i€S
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Stochastic optimization methods

First-order methods (NON-exhaustive list)

@ Stochastic Approximation - SA (Stochastic Gradient - SG)
[Robbins & Monro, Ann. Math. Statistics 1951] (convergence in probability
with harmonic-type step length, also almost sure (a.s.) convergence with SA

variants)

@ In the “realm” of machine learning:

» minibatch gradient methods, see e.g. [Bottou, Curtis & Nocedal, SIREV 2018]
(convergence in expectation of obj fun error with constant or harmonic-type
step length)

» variance-reduction gradient methods, e.g. SVRG [Johnson & Zhang, NIPS
2013], SAGA [Defazio, Bach & Lacoste-Julien, NIPS 2014], JacSketch [Gower,
Richtarik & Bach, Math Prog 2020]

(linear convergence in expectation with constant step length)
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Stochastic optimization methods (cont'd)

Methods using second-order info (NON-exhaustive list)

@ Stochastic versions of Newton-type methods
> Ruppert, Ann Statist 1985
» Spall, Proc various IEEE Conferences 1994, 1995, 1005
» Byrd, Chin, Neveitt & Nocedal, SIOPT 2011
» Byrd, Chin, Nocedal & Wu, Math Program 2012
> Bellavia, Kreji¢ & Krklec Jerinki¢, IMA JNA 2019
» Bollapragada, Byrd & Nocedal, IMA JNA 2019

@ Stochastic BFGS
» Byrd, Chin, Neveitt & Nocedal, SIOPT 2011
» Moktari & Ribeiro, IEEE TSP 2014
> Byrd, Hansen, Nocedal & Singer, SIOPT 2016
» Gower, Goldfarb & Richtarik, Proc ICML 2016
» Moritz, Nishihara & Jordan, Proc MLR 2016
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Our family of methods: LSOS

@ Line-search Second-Order Stochastic algorithmic framework, where
Newton-type and quasi-Newton directions are used

@ Almost sure convergence of the sequence of iterates generated by the
methods fitting into the LSOS framework and effectiveness in practice

@ For finite-sum objective functions (e.g. in machine learning)

» stochastic L-BFGS for Hessian estimates + SAGA-type for gradient estimates
+ line search

> almost sure convergence of the sequence of iterates (for state-of-the-art
stochastic L-BFGS convergence in expectation of the obj function error)

> linear convergence rate and worst-case O(log(s~")) complexity

> practical efficiency (comparison with state-of-the-art stochastic optimization
methods)
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Outline

© The LSOS framework
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SOS: Second-Order Stochastic method

Sketch of SOS method
1: given o € R™ and {ax} C R4
2: for k=0,1,2,... do
3 compute d, € R"
4. set Try1 = Tk + ardy
5

: end for

dy, specified later
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SOS: Second-Order Stochastic method

Sketch of SOS method

1: given o € R™ and {ax} C R4
: for k=0,1,2,... do

compute d, € R"

set Try1 = Tk + ardy
end for

AN

dy, specified later

M. Viola (V:anvitelli)

Basic assumptions

@ ¢ strongly convex with Lipschitz-continuous
gradient:

> x. unique solution
> ul X V2¢(x) X LT

@ Harmonic step-length sequence:
ay > 0, Zkak = 00, Zkaﬁ < 00

© Unbiased gradient estimator and bounded
variance of gradient errors:

E(eq(@)|Fx) = 0 and E(|leg()[*|Fx) < M
(Frx = o-algebra generated by o, x1,...,xk)
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Basic assumptions on the search directions

Deterministic case: c; > 0 constants

© "“Sufficient” descent direction:
V() " di < —ca |V ()|l
@ Direction norm bounded by gradient:

i || < es[[Vo(ms)l|
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Basic assumptions on the search directions

Stochastic case: ¢; > 0 constants

© Deviation from descent direction allowed:

V(i) E (dil Fi) < c10r — 2 [Vo(@e)lI”, x>0, Y ondy < o0
k

@ Direction norm bounded by noisy gradient:

ldill < csllg(ze)l as.
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Basic assumptions on the search directions

Stochastic case: ¢; > 0 constants

© Deviation from descent direction allowed:

V(i) E (dil Fi) < c10r — 2 [Vo(@e)lI”, x>0, Y ondy < o0
k

@ Direction norm bounded by noisy gradient:

ldill < csllg(ze)l as.

Theorem J

Under the previous assumptions, the sequence {x}} converges to x, a.s.
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Search directions using second-order information

Further (reasonable) assumptions
@ Positive definite and bounded approximate Hessians: ul < B(x) < LI

@ Mutually independent noise terms e¢(x),e,4(x) and ep(x) (to be relaxed
for finite-sum problems)
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Search directions using second-order information

Further (reasonable) assumptions

@ Positive definite and bounded approximate Hessians: ©l < B(x) < LI

@ Mutually independent noise terms (), e4(x) and eg(x) (to be relaxed
for finite-sum problems)

Possible directions guaranteeing convergence:
@ Newton directions:

B(zy)dr = —g(x)
@ "“Inexact” Newton directions:
| B(xr)di + g(xr)|| < kv

~x random variable with bounded variance
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Search directions using second-order information

Further (reasonable) assumptions

@ Positive definite and bounded approximate Hessians: ©l < B(x) < LI

@ Mutually independent noise terms (), e4(x) and eg(x) (to be relaxed
for finite-sum problems)

Possible directions guaranteeing convergence:
@ Newton directions:

B(zy)dr = —g ()
@ “Inexact” Newton directions:
| B(xx)dy + g(xr)]| < Sk (wink +wallg(z)l)
w1, ws > 0 constant, 1 random variable with bounded variance

M. Viola (V:anvitelli) LSOS Dec 15, 2020 11/32



LSOS: Line-search SOS

@ A harmonic step-length sequence (3", ay = 0o, Y., ai < 0o) may
make the algorithm slow (the steplength becomes too small soon)

@ Tuning is necessary to ensure reasonable results; if the steplengths are
not small enough the algorithm may diverge
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LSOS: Line-search SOS

@ A harmonic step-length sequence (3", ay = 0o, Y., ai < 0o) may
make the algorithm slow (the steplength becomes too small soon)

@ Tuning is necessary to ensure reasonable results; if the steplengths are
not small enough the algorithm may diverge

IDEA: start with line search and move to harmonic step lengths only if the
line search produces small step lengths
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LSOS: Line-search SOS

@ A harmonic step-length sequence (3, ay = 0o, Y., ai < 0o) may
make the algorithm slow (the steplength becomes too small soon)

@ Tuning is necessary to ensure reasonable results; if the steplengths are
not small enough the algorithm may diverge

IDEA: start with line search and move to harmonic step lengths only if the
line search produces small step lengths

@ At each step the direction is not guaranteed to be a descent direction for

p(x)

IDEA: use nonmonotone line search }
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LSOS: Line-search SOS (cont'd)

LSOS algorithm

1: given zo € R", n € (0,1), tmin > 0 and {ar}, {0x}, {C} C R4
2: set LSphase = active

3: fork=0,1,2,... do

4 compute a search direction dj, such that

| B(zk)di + g(zk)|| < okllg(x)||

10: end for
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LSOS: Line-search SOS (cont'd)

LSOS algorithm

1: given zo € R", n € (0,1), tmin > 0 and {ar}, {0x}, {C} C R4
2: set LSphase = active

3: fork=0,1,2,... do

4. compute a search direction dj such that

| B(zk)di + g(zk)|| < okllg(x)||

5. find a step length ¢; as follows:

6: if LSphase = active then find ¢, that satisfies
f@e + tedi) < f(zr) +ntreg(@e) " di + G

7: if t; < tmin then set LSphase = inactive

8: if LSphase = inactive then set ), = ax

9: set Ti+1 = Tk + trdi

10: end for
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LSOS convergence

Theorem

Assume that {(} is summable and the objective function estimator f is
unbiased, i.e.

E(e ()| Fr) = 0.

If the sequence {x} generated by LSOS is bounded, then ), — x. a.s..
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© Numerical experiments with LSOS
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Convex random problems (type 1)

o(x) =Y A€ — )+ (@ —1) A — 1)
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https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Convex random problems (type 1)

o(x) =Y A€ — )+ (@ —1) A — 1)

A;i's logarithmically spaced between 1 and «
A € R™™™ spd with eigenvalues \; (generated by sprandsym)
n=10% k= 10%10% 10"
ef(x) ~ N(0,0), (eq(x))i ~N(0,0) and
eg(x) =diag (1, .., n), i ~ N(0,0)
0 =01%k,0.5% Kk, 1% Kk

x. computed with high accuracy using deterministic L-BFGS
(M. Schmidt, https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html)
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Convex random problems (type 1)

plx) =D Ni(e" —w)+(@—1) A@—1)

A;i's logarithmically spaced between 1 and «
A € R™™™ spd with eigenvalues \; (generated by sprandsym)
n=10% k= 10%10% 10"
ef(x) ~ N(0,0), (eq(x))i ~N(0,0) and
eg(x) =diag (1, .., n), i ~ N(0,0)
0 =01%k,0.5% Kk, 1% Kk

x. computed with high accuracy using deterministic L-BFGS
(M. Schmidt, https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html)

Comparison of

@ LSOS with exact solution of noisy Newton systems

1 T
lldol| T+ &~
@ Stochastic Gradient Descent (SGD) with step length

@ SOS with pre-defined step length oy, = T =10°
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https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Convex random problems (type 1): obj fun error vs time
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Convex random problems (type 2)

Z)\ %)+ (w—1)T A —1)
A=VDVT, D—dlag()\l,...J\n)., V = (I —2wv3v3 )(I — 20203 ) (I — 20107 ),

v; random, |lv;|| =1

e n=2-10% k=102 103, 10*
0 0 =0.1%k,05%k, 1%k

@ Hessian in factorized form = (noisy) Newton system must be solved
inexactly (e.g., by CG)
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Convex random problems (type 2)

ZA %)+ (w—1)T A —1)
A=VDVT, D—dlag()\l,...7)\n), V = (I —2wv3v3 )(I — 20203 ) (I — 20107 ),

v; random, |lv;|| =1

e n=2-10% s =10%10° 10"
0 0 =0.1%k,05%k, 1%k
@ Hessian in factorized form = (noisy) Newton system must be solved

inexactly (e.g., by CG)

Comparison of

@ LSOS (“exact” solution of noisy Newton systems - CG tolerance le-6)

@ LSOS-I (inexact solution of noisy Newton systems - decreasing tolerance
sequence)

@ SGD-LS (SGD with line search)
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Convex random problems (type 2): obj fun error vs time
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Outline

@ Specializing LSOS for finite sums
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The finite sum case

b@) =+ > 6i(a)

¢i(x) € C? Ti-strongly convex, with Lipschitz-continuous gradient with constant L
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The finite sum case

() = Z

¢i(x) € C? Ti-strongly convex, with Lipschitz-continuous gradient with constant L

Subsampling: at each iter k, a sample N of size Ny, < N is chosen randomly and
uniformly from N = {1,..., N }:

I (@) = Z bi(x), gNk = Z Voi(x

16Nk ZENk

BNk Z V ¢z

lENk
(unbiased estimators of ¢(x), Vé(x) and VZ¢(x))
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Stochastic variant of L-BFGS

Hessian approximation from stochastic variant of Limited-memory BFGS (L-BFGS)
[Byrd, Hansen, Nocedal & Singer, SIOPT 2016]

Hj, defined by applying m BFGS updates to an initial matrix, using the m most
recent correction pairs (s;,y,) obtained averaging iterates over r steps (j = k/r):

He=H{™, where H" = my’"[

1y

T T

g s,y 1 Y; 8 B 64 .

ng]):(l—;y>H<] )(I 78;7;7‘)-1-7;7;7, j=1,....,m
sj=w; —w;-1, yY;=DBr(w;)s;, T; C{l N}
k—r
Z i, Wj—1= — Z i
i=k—r+1 i=k—2r+1
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Mini-batch SAGA

Subsampled gradient estimate by a a mini-batch variant of SAGA
[Defazio, Bach & Lacoste-Julien, NIPS 2014; Gower, Richtarik & Bach, Math Prog 2020]

N
1 Z 1 r
) = g 2 (Ve = a0) + 5 30

1EN —
i g if i ¢ N o
k+1 { Voi(xrt1) ifie N 0 ¢i(xo)
{1,..., N} partitioned into a fixed number n; of random mini-batches, which are

used in order

Advantage of SAGA over SVRG: full gradient computation only at the beginning of
the algorithm (SVRG: full gradient computation each n, iterations)
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LSOS-BFGS: Finite-Sum LSOS with L-BFGS

LSOS-BFGS

1: given xo € R*, m,r € N, n,9 € (0,1)

2: for k=0,1,2,... do

3:  compute a partition {Ko, KC1,...,Kpn,—1} of {1,..., N}

13: end for

M. Viola (V:anvitelli) LSOS Dec 15, 2020 24 /32



LSOS-BFGS: Finite-Sum LSOS with L-BFGS

LSOS-BFGS

1: given xo € R*, m,r € N, n,9 € (0,1)

2: for k=0,1,2,... do

3:  compute a partition {Ko, KC1,...,Kpn,—1} of {1,..., N}
4: fors=0,...,n, —1do
5 SAGA
6

choose Nj. = K5 and compute g(zx) = gR;,"" (Tx)
compute di = —Hy, g(xy) with Hy, defined by stochastic L-BFGS

13: end for
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LSOS-BFGS: Finite-Sum LSOS with L-BFGS

LSOS-BFGS

1: given xo € R*, m,r € N, n,9 € (0,1)

2: for k=0,1,2,... do

3:  compute a partition {Ko, KC1,...,Kpn,—1} of {1,..., N}
4: fors=0,...,n, —1do
5 SAGA
6
7

choose Nj. = K5 and compute g(zx) = gR;,"" (Tx)
compute di = —Hy, g(xy) with Hy, defined by stochastic L-BFGS
find a step length ¢, such that

Ing (@ 4 trdy) < fa () + 1t g(ar) T dy, + 9°

8: set Tp4+1 = Tk + trdy;

9: if mod (k,7) =0 and k > 2r then
10: update the L-BFGS correction pairs
11: end if
12:  end for
13: end for
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FS-LSOS: convergence

Theorem (convergence)

Assume {ti} is bounded away from zero. Then {x\} converges a.s. to the unique
minimizer of ¢.
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FS-LSOS: convergence

Theorem (convergence)

Assume {ti} is bounded away from zero. Then {x\} converges a.s. to the unique
minimizer of ¢.

Theorem (convergence rate)

Let {tr} be bounded away from zero. Then there exist p € (0,1) and C > 0 such
that

E(¢(x) — $(z+)) < Op".

Theorem (complexity bound)

In order to achieve E(¢(xr) — () < & for some e € (0,e™"), LSOS-FS takes at
most

log(C 1 1 _i
kmax = [%log(e )-‘ =0 (log(a ))

with p € (0,1) and C > 0.
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© Numerical experiments with LSOS-BFGS
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Linear classification problems

Training a linear classifier by minimizing the ¢o-regularized logistic regression

Given N pairs (a;,b;), a; € R™ training point, b; € {—1,1} corresponding label,
a hyperplane approximately separating the two classes can be found by mini-

mizing
1 Ta) P
o) = 5 D i), with ¢i(x) =log (1 et w) + 512l >0
=1
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Linear classification problems

Training a linear classifier by minimizing the ¢o-regularized logistic regression

Given N pairs (a;,b;), a; € R™ training point, b; € {—1,1} corresponding label,
a hyperplane approximately separating the two classes can be found by mini-

mizing
1 T I
[ . H . — —bija; © Ll 2
bw) = ;@(m), with ¢;(@) = log (1+¢ ") 1+ Ljaf/2, >0
Note that
_1-z(=) 2 _zal@) -1 ¢ aobia]
Voi(x) = sz a;+px, Voi(x) = Walai +ul, zi(x) =1+e

4

¢; p-strongly convex, ul < V%¢;i(x) < LI, L=p+ max @ ||?

.....
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Linear classification problems (cont'd)

LIBSVM datasets (https://wuw.csie.ntu.edu.tw/~cjlin/libsvmtools/)

name N n
covtype | 406709 54
w8a 49749 300
epsilon 400000 2000
gisette 6000 5000
real-sim 50617 | 20958
revl 20242 | 47236

NOTE: p = 1/N, sample size = {\/ﬁ]
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Linear classification problems (cont'd)

LIBSVM datasets (https://wuw.csie.ntu.edu.tw/~cjlin/libsvmtools/)

name N n
covtype | 406709 54
w8a 49749 300
epsilon 400000 2000
gisette 6000 5000
real-sim 50617 | 20958
revl 20242 | 47236

NOTE: p = 1/N, sample size = {\/ﬁ]

Comparison between

@ LSOS-BFGS, withm =10and r =5

@ GGR [Gower, Goldfarb & Richtarik, Proc ICML 2016]

@ MNJ [Moritz, Nishihara & Jordan, Proc MLR 2016]

@ Mini-batch variant of SAGA, with the same line search as LSOS-BFGS
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Classification problems: obj fun error vs time

wa8a -- smpsize 223 (sqrt(N))
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Classification problems: obj fun error vs time

gisette -- smpsize 77 (sqrt(N))

real-sim -- smpsize 224 (sqrt(N))
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Outline

© Conclusions and future work
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Conclusions and future work

@ We introduced LSOS a flexible second-order framework for optimization in
noisy environments

@ Almost sure convergence holds for the sequences generated by all the LSOS
variants

@ For finite-sum problems, we proved linear convergence rate on the obj. fun.
error and worst-case complexity bound O(log(e™")) for LSOS with stochastic
L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are
used
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error and worst-case complexity bound O(log(e™")) for LSOS with stochastic
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@ Numerical experiments confirm that line-search techniques in second-order
stochastic methods yield a significant improvement over predefined step-length
sequences

@ For finite sum problems LSOS-BFGS highly competitive with state-of-the art
second-order stochastic optimization methods
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Conclusions and future work

@ We introduced LSOS a flexible second-order framework for optimization in
noisy environments

@ Almost sure convergence holds for the sequences generated by all the LSOS
variants

@ For finite-sum problems, we proved linear convergence rate on the obj. fun.
error and worst-case complexity bound O(log(e™")) for LSOS with stochastic
L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are
used

@ Numerical experiments confirm that line-search techniques in second-order
stochastic methods yield a significant improvement over predefined step-length
sequences

@ For finite sum problems LSOS-BFGS highly competitive with state-of-the art
second-order stochastic optimization methods

@ What's next? Possible extension to problems not satisfying the strong
convexity assumption and to constrained problems

M. Viola (V:anvitelli) LSOS Dec 15, 2020 31/32



Thanks for the attention!
Any questions?

Do you want to know more?

D. di Serafino, N. Kreji¢, N. Krklec Jerinki¢, M. Viola, LSOS: Line-search Second-Order
Stochastic optimization methods, submitted (also available on ArXiv and Optimization

Online)
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