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BOS/SOR2020 Conference
Palais Staszic, Warsaw
December 15, 2020



Outline

1 Problem, motivations and contribution

2 The LSOS framework

3 Numerical experiments with LSOS

4 Specializing LSOS for finite sums

5 Numerical experiments with LSOS-BFGS

6 Conclusions and future work

M. Viola (V:anvitelli) LSOS Dec 15, 2020 1 / 32



Outline

1 Problem, motivations and contribution

2 The LSOS framework

3 Numerical experiments with LSOS

4 Specializing LSOS for finite sums

5 Numerical experiments with LSOS-BFGS

6 Conclusions and future work

M. Viola (V:anvitelli) LSOS Dec 15, 2020 2 / 32



The problem

minimize
x∈Rn

φ(x)

φ(x) twice continuously differentiable function in a noisy environment, i.e.
φ(x), ∇φ(x) and ∇2φ(x) are only accessible with some level of noise:

f(x) = φ(x) + εf (x)
g(x) = ∇φ(x) + εg(x)
B(x) = ∇2φ(x) + εB(x)

εf (x) random number, εg(x) random vector, εB(x) symmetric random matrix
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The problem (cont’d)
The error may derive from:

uncertainty on data;
measurement errors;
communication errors;
computational inaccuracy (data come from a simulation);
...

Special cases:
mathematical expectation:

φ(x) = Eξ∼D [v(x, ξ)] , and f(x) = v(x, ξ), with ξ ∼ D

(large) finite sum of functions:

φ(x) =
N∑
i=1

φi(x), and f(x) =
∑
i∈S

φi(x), with S ⊆ {1, . . . , N}
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Stochastic optimization methods

First-order methods (NON-exhaustive list)

Stochastic Approximation - SA (Stochastic Gradient - SG)
[Robbins & Monro, Ann. Math. Statistics 1951] (convergence in probability
with harmonic-type step length, also almost sure (a.s.) convergence with SA
variants)

In the “realm” of machine learning:
I minibatch gradient methods, see e.g. [Bottou, Curtis & Nocedal, SIREV 2018]

(convergence in expectation of obj fun error with constant or harmonic-type
step length)

I variance-reduction gradient methods, e.g. SVRG [Johnson & Zhang, NIPS
2013], SAGA [Defazio, Bach & Lacoste-Julien, NIPS 2014], JacSketch [Gower,
Richtárik & Bach, Math Prog 2020]
(linear convergence in expectation with constant step length)
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Stochastic optimization methods (cont’d)

Methods using second-order info (NON-exhaustive list)

Stochastic versions of Newton-type methods
I Ruppert, Ann Statist 1985
I Spall, Proc various IEEE Conferences 1994, 1995, 1005
I Byrd, Chin, Neveitt & Nocedal, SIOPT 2011
I Byrd, Chin, Nocedal & Wu, Math Program 2012
I Bellavia, Krejić & Krklec Jerinkić, IMA JNA 2019
I Bollapragada, Byrd & Nocedal, IMA JNA 2019

Stochastic BFGS
I Byrd, Chin, Neveitt & Nocedal, SIOPT 2011
I Moktari & Ribeiro, IEEE TSP 2014
I Byrd, Hansen, Nocedal & Singer, SIOPT 2016
I Gower, Goldfarb & Richtárik, Proc ICML 2016
I Moritz, Nishihara & Jordan, Proc MLR 2016
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Our family of methods: LSOS

Line-search Second-Order Stochastic algorithmic framework, where
Newton-type and quasi-Newton directions are used

Almost sure convergence of the sequence of iterates generated by the
methods fitting into the LSOS framework and effectiveness in practice

For finite-sum objective functions (e.g. in machine learning)
I stochastic L-BFGS for Hessian estimates + SAGA-type for gradient estimates

+ line search
I almost sure convergence of the sequence of iterates (for state-of-the-art

stochastic L-BFGS convergence in expectation of the obj function error)
I linear convergence rate and worst-case O(log(ε−1)) complexity
I practical efficiency (comparison with state-of-the-art stochastic optimization

methods)
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SOS: Second-Order Stochastic method

Sketch of SOS method
1: given x0 ∈ Rn and {αk} ⊂ R+

2: for k = 0, 1, 2, . . . do
3: compute dk ∈ Rn

4: set xk+1 = xk + αkdk

5: end for

dk specified later

Basic assumptions

1 φ strongly convex with Lipschitz-continuous
gradient:
I x∗ unique solution
I µI � ∇2φ(x) � LI

2 Harmonic step-length sequence:
αk > 0,

∑
k
αk =∞,

∑
k
α2

k <∞

3 Unbiased gradient estimator and bounded
variance of gradient errors:
E(εg(x)|Fk) = 0 and E(‖εg(x)‖2|Fk) ≤M
(Fk = σ-algebra generated by x0,x1, . . . ,xk)
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Basic assumptions on the search directions

Deterministic case: ci > 0 constants

3 “Sufficient” descent direction:

∇φ(xk)>dk ≤ −c2 ‖∇φ(xk)‖2

4 Direction norm bounded by gradient:

‖dk‖ ≤ c3 ‖∇φ(xk)‖

Theorem
Under the previous assumptions, the sequence {xk} converges to x∗ a.s.
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Search directions using second-order information

Further (reasonable) assumptions
6 Positive definite and bounded approximate Hessians: µI � B(x) � LI

7 Mutually independent noise terms εf (x), εg(x) and εB(x) (to be relaxed
for finite-sum problems)

Possible directions guaranteeing convergence:
Newton directions:

B(xk)dk = −g(xk)

“Inexact” Newton directions:
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LSOS: Line-search SOS

A harmonic step-length sequence (
∑
k αk =∞,

∑
k α

2
k <∞) may

make the algorithm slow (the steplength becomes too small soon)

Tuning is necessary to ensure reasonable results; if the steplengths are
not small enough the algorithm may diverge

IDEA: start with line search and move to harmonic step lengths only if the
line search produces small step lengths

At each step the direction is not guaranteed to be a descent direction for
φ(x)

IDEA: use nonmonotone line search
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LSOS: Line-search SOS (cont’d)

LSOS algorithm
1: given x0 ∈ Rn, η ∈ (0, 1), tmin > 0 and {αk}, {δk}, {ζk} ⊂ R+

2: set LSphase = active
3: for k = 0, 1, 2, . . . do
4: compute a search direction dk such that

‖B(xk)dk + g(xk)‖ ≤ δk‖g(xk)‖

5: find a step length tk as follows:
6: if LSphase = active then find tk that satisfies

f(xk + tkdk) ≤ f(xk) + ηtkg(xk)>dk + ζk

7: if tk < tmin then set LSphase = inactive
8: if LSphase = inactive then set tk = αk

9: set xk+1 = xk + tkdk

10: end for
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LSOS convergence

Theorem
Assume that {ζk} is summable and the objective function estimator f is
unbiased, i.e.

E(εf (x)|Fk) = 0.

If the sequence {xk} generated by LSOS is bounded, then xk → x∗ a.s..
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Convex random problems (type 1)

φ(x) =
n∑

i=1

λi (exi − xi) + (x− 1)>A(x− 1)

λi’s logarithmically spaced between 1 and κ
A ∈ Rn×n spd with eigenvalues λi (generated by sprandsym)
n = 103, κ = 102, 103, 104

εf (x) ∼ N (0, σ), (εg(x))i ∼ N (0, σ) and
εB(x) = diag (µ1, . . . , µn), µi ∼ N (0, σ)
σ = 0.1%κ, 0.5%κ, 1%κ

x∗ computed with high accuracy using deterministic L-BFGS
(M. Schmidt, https://www.cs.ubc.ca/˜schmidtm/Software/minFunc.html)

Comparison of
LSOS with exact solution of noisy Newton systems

SOS with pre-defined step length αk = 1
‖d0‖

T

T + k
, T = 106

Stochastic Gradient Descent (SGD) with step length αk
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Convex random problems (type 1): obj fun error vs time
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Convex random problems (type 2)

φ(x) =
n∑

i=1

λi (exi − xi) + (x− 1)>A(x− 1)

A = V D V T , D = diag(λ1, . . . , λn), V = (I − 2 v3vT
3 )(I − 2 v2vT

2 )(I − 2 v1vT
1 ),

vj random, ‖vj‖ = 1

n = 2 · 104, κ = 102, 103, 104

σ = 0.1%κ, 0.5%κ, 1%κ

Hessian in factorized form =⇒ (noisy) Newton system must be solved
inexactly (e.g., by CG)

Comparison of
LSOS (“exact” solution of noisy Newton systems - CG tolerance 1e-6)

LSOS-I (inexact solution of noisy Newton systems - decreasing tolerance
sequence)

SGD-LS (SGD with line search)
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The finite sum case

φ(x) = 1
N

N∑
i=1

φi(x)

φi(x) ∈ C2 µ-strongly convex, with Lipschitz-continuous gradient with constant L

Subsampling: at each iter k, a sample Nk of size Nk � N is chosen randomly and
uniformly from N = {1, ..., N}:

fNk (x) = 1
Nk

∑
i∈Nk

φi(x), gNk
(x) = 1

Nk

∑
i∈Nk

∇φi(x),

BNk (x) = 1
Nk

∑
i∈Nk

∇2φi(x)

(unbiased estimators of φ(x), ∇φ(x) and ∇2φ(x))
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Stochastic variant of L-BFGS

Hessian approximation from stochastic variant of Limited-memory BFGS (L-BFGS)
[Byrd, Hansen, Nocedal & Singer, SIOPT 2016]

Hk defined by applying m BFGS updates to an initial matrix, using the m most
recent correction pairs (sj ,yj) obtained averaging iterates over r steps (j = k/r):

Hk = H
(m)
k , where H

(0)
k = s>

mym

‖ym‖2 I

H
(j)
k =

(
I −

sj y>
j

s>
j

yj

)>
H

(j−1)
k

(
I −

yj s>
j

s>
j

yj

)
+

sj s>
j

s>
j

yj
, j = 1, . . . ,m

sj = wj −wj−1, yj = BTj (wj) sj , Tj ⊂ {1, . . . , N}

wj = 1
r

k∑
i=k−r+1

xi, wj−1 = 1
r

k−r∑
i=k−2r+1

xi
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Mini-batch SAGA

Subsampled gradient estimate by a a mini-batch variant of SAGA
[Defazio, Bach & Lacoste-Julien, NIPS 2014; Gower, Richtárik & Bach, Math Prog 2020]

gSAGA
Nk

(xk) = 1
Nk

∑
i∈Nk

(
∇φi(xk)− J(i)

k

)
+ 1
N

N∑
r=1

J
(r)
k

J
(i)
k+1 =

{
J

(i)
k if i /∈ Nk

∇φi(xk+1) if i ∈ Nk
, J

(i)
0 = ∇φi(x0)

{1, . . . , N} partitioned into a fixed number nb of random mini-batches, which are
used in order

Advantage of SAGA over SVRG: full gradient computation only at the beginning of
the algorithm (SVRG: full gradient computation each nb iterations)
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LSOS-BFGS: Finite-Sum LSOS with L-BFGS

LSOS-BFGS
1: given x0 ∈ Rn, m, r ∈ N, η, ϑ ∈ (0, 1)
2: for k = 0, 1, 2, . . . do
3: compute a partition {K0,K1, . . . ,Knb−1} of {1, . . . , N}

4: for s = 0, . . . , nb − 1 do
5: choose Nk = Ks and compute g(xk) = gSAGA

Nk
(xk)

6: compute dk = −Hk g(xk) with Hk defined by stochastic L-BFGS

7: find a step length tk such that
fNk (xk + tkdk) ≤ fNk (xk) + ηtk g(xk)>dk + ϑk

8: set xk+1 = xk + tkdk;
9: if mod (k, r) = 0 and k ≥ 2 r then

10: update the L-BFGS correction pairs
11: end if
12: end for

13: end for
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fNk (xk + tkdk) ≤ fNk (xk) + ηtk g(xk)>dk + ϑk

8: set xk+1 = xk + tkdk;
9: if mod (k, r) = 0 and k ≥ 2 r then

10: update the L-BFGS correction pairs
11: end if
12: end for
13: end for
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FS-LSOS: convergence

Theorem (convergence)
Assume {tk} is bounded away from zero. Then {xk} converges a.s. to the unique
minimizer of φ.

Theorem (convergence rate)
Let {tk} be bounded away from zero. Then there exist ρ ∈ (0, 1) and C > 0 such
that

E(φ(xk)− φ(x∗)) ≤ Cρk.

Theorem (complexity bound)
In order to achieve E(φ(xk)− φ(x∗)) ≤ ε for some ε ∈ (0, e−1), LSOS-FS takes at
most

kmax =
⌈
|log(C)|+ 1
|log(ρ)| log(ε−1)

⌉
= O

(
log(ε−1)

)
with ρ ∈ (0, 1) and C > 0.
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Linear classification problems

Training a linear classifier by minimizing the `2-regularized logistic regression

Given N pairs (ai, bi), ai ∈ Rn training point, bi ∈ {−1, 1} corresponding label,
a hyperplane approximately separating the two classes can be found by mini-
mizing

φ(x) = 1
N

N∑
i=1

φi(x), with φi(x) = log
(

1 + e−bi a>
i x
)

+ µ

2 ‖x‖
2, µ > 0

Note that

∇φi(x) = 1− zi(x)
zi(x) bi ai+µx, ∇2φi(x) = zi(x)− 1

z2
i (x) aia

>
i +µI, zi(x) = 1+e−bi a>

i x

⇓

φi µ-strongly convex, µI � ∇2φi(x) � LI, L = µ+ max
i=1,...,N

‖ai‖2

M. Viola (V:anvitelli) LSOS Dec 15, 2020 27 / 32



Linear classification problems

Training a linear classifier by minimizing the `2-regularized logistic regression

Given N pairs (ai, bi), ai ∈ Rn training point, bi ∈ {−1, 1} corresponding label,
a hyperplane approximately separating the two classes can be found by mini-
mizing

φ(x) = 1
N

N∑
i=1

φi(x), with φi(x) = log
(

1 + e−bi a>
i x
)

+ µ

2 ‖x‖
2, µ > 0

Note that

∇φi(x) = 1− zi(x)
zi(x) bi ai+µx, ∇2φi(x) = zi(x)− 1

z2
i (x) aia

>
i +µI, zi(x) = 1+e−bi a>

i x

⇓

φi µ-strongly convex, µI � ∇2φi(x) � LI, L = µ+ max
i=1,...,N

‖ai‖2

M. Viola (V:anvitelli) LSOS Dec 15, 2020 27 / 32



Linear classification problems (cont’d)

LIBSVM datasets (https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/)

name N n

covtype 406709 54
w8a 49749 300
epsilon 400000 2000
gisette 6000 5000
real-sim 50617 20958
rcv1 20242 47236

NOTE: µ = 1/N , sample size =
⌈√

N
⌉

Comparison between

LSOS-BFGS, with m = 10 and r = 5

GGR [Gower, Goldfarb & Richtárik, Proc ICML 2016]

MNJ [Moritz, Nishihara & Jordan, Proc MLR 2016]

Mini-batch variant of SAGA, with the same line search as LSOS-BFGS
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Classification problems: obj fun error vs time
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Classification problems: obj fun error vs time
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Conclusions and future work

We introduced LSOS a flexible second-order framework for optimization in
noisy environments

Almost sure convergence holds for the sequences generated by all the LSOS
variants

For finite-sum problems, we proved linear convergence rate on the obj. fun.
error and worst-case complexity bound O(log(ε−1)) for LSOS with stochastic
L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are
used

Numerical experiments confirm that line-search techniques in second-order
stochastic methods yield a significant improvement over predefined step-length
sequences

For finite sum problems LSOS-BFGS highly competitive with state-of-the art
second-order stochastic optimization methods

What’s next? Possible extension to problems not satisfying the strong
convexity assumption and to constrained problems
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Thanks for the attention!
Any questions?

Do you want to know more?
D. di Serafino, N. Krejić, N. Krklec Jerinkić, M. Viola, LSOS: Line-search Second-Order
Stochastic optimization methods, submitted (also available on ArXiv and Optimization
Online)
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