# Line-search second-order methods for optimization in noisy environments

#### Marco Viola

Department of Mathematics and Physics University of Campania "L. Vanvitelli" marco.viola@unicampania.it

Joint work with

Daniela di Serafino – University of Naples Federico II Nataša Krejić, Nataša Krklec Jerinkić – University of Novi Sad

> BOS/SOR2020 Conference Palais Staszic, Warsaw December 15, 2020

(日) (日) (日) (日) (日)

Università degli Studi della Campania *Luigi Vanvitelli* 

## Outline



- 2 The LSOS framework
- Output State St
- 4 Specializing LSOS for finite sums
- 5 Numerical experiments with LSOS-BFGS
- 6 Conclusions and future work

< □ > < 同 > < 回 > < 回 >

## Outline

#### 1 Problem, motivations and contribution

2 The LSOS framework

3 Numerical experiments with LSOS

4 Specializing LSOS for finite sums

5 Numerical experiments with LSOS-BFGS

6 Conclusions and future work

イロト イヨト イヨト イヨ

 $\underset{\boldsymbol{x} \in \mathbb{R}^n}{\operatorname{minimize}} \phi(\boldsymbol{x})$ 

 $\phi(x)$  twice continuously differentiable function in a noisy environment, i.e.  $\phi(x)$ ,  $\nabla \phi(x)$  and  $\nabla^2 \phi(x)$  are only accessible with some level of noise:

$$\begin{split} f(\boldsymbol{x}) &= \phi(\boldsymbol{x}) + \varepsilon_f(\boldsymbol{x}) \\ \boldsymbol{g}(\boldsymbol{x}) &= \nabla \phi(\boldsymbol{x}) + \varepsilon_g(\boldsymbol{x}) \\ B(\boldsymbol{x}) &= \nabla^2 \phi(\boldsymbol{x}) + \varepsilon_B(\boldsymbol{x}) \end{split}$$

 $arepsilon_f(m{x})$  random number,  $m{arepsilon}_g(m{x})$  random vector,  $arepsilon_B(m{x})$  symmetric random matrix

イロト イヨト イヨト

# The problem (cont'd)

The error may derive from:

- uncertainty on data;
- measurement errors;
- communication errors;
- computational inaccuracy (data come from a simulation);

• ...

イロト イヨト イヨト イヨト

# The problem (cont'd)

The error may derive from:

- uncertainty on data;
- measurement errors;
- communication errors;
- computational inaccuracy (data come from a simulation);

• ...

Special cases:

• mathematical expectation:

$$\phi(\boldsymbol{x}) = E_{\boldsymbol{\xi} \sim \mathcal{D}}\left[v(\boldsymbol{x}, \boldsymbol{\xi})\right], \quad \text{ and } \quad f(\boldsymbol{x}) = v(\boldsymbol{x}, \overline{\boldsymbol{\xi}}), \text{ with } \overline{\boldsymbol{\xi}} \sim \mathcal{D}$$

< □ > < 同 > < 回 > < 回 >

# The problem (cont'd)

The error may derive from:

- uncertainty on data;
- measurement errors;
- communication errors;
- computational inaccuracy (data come from a simulation);

• ...

Special cases:

• mathematical expectation:

$$\phi(\boldsymbol{x}) = E_{\boldsymbol{\xi} \sim \mathcal{D}}\left[v(\boldsymbol{x}, \boldsymbol{\xi})\right], \quad \text{ and } \quad f(\boldsymbol{x}) = v(\boldsymbol{x}, \overline{\boldsymbol{\xi}}), \text{ with } \overline{\boldsymbol{\xi}} \sim \mathcal{D}$$

$$\phi(\boldsymbol{x}) = \sum_{i=1}^{N} \phi_i(\boldsymbol{x}), \quad \text{and} \quad f(\boldsymbol{x}) = \sum_{i \in \mathcal{S}} \phi_i(\boldsymbol{x}), \text{ with } \mathcal{S} \subseteq \{1, \dots, N\}$$

## Stochastic optimization methods

#### First-order methods (NON-exhaustive list)

- Stochastic Approximation SA (Stochastic Gradient SG) [Robbins & Monro, Ann. Math. Statistics 1951] (convergence in probability with harmonic-type step length, also almost sure (a.s.) convergence with SA variants)
- In the "realm" of machine learning:
  - minibatch gradient methods, see e.g. [Bottou, Curtis & Nocedal, SIREV 2018] (convergence in expectation of obj fun error with constant or harmonic-type step length)
  - variance-reduction gradient methods, e.g. SVRG [Johnson & Zhang, NIPS 2013], SAGA [Defazio, Bach & Lacoste-Julien, NIPS 2014], JacSketch [Gower, Richtárik & Bach, Math Prog 2020]
     (linear convergence in expectation with constant step length)

・ロト ・日本・ ・ ヨト・ モト・

# Stochastic optimization methods (cont'd)

Methods using second-order info (NON-exhaustive list)

- Stochastic versions of Newton-type methods
  - Ruppert, Ann Statist 1985
  - ▶ Spall, Proc various IEEE Conferences 1994, 1995, 1005
  - Byrd, Chin, Neveitt & Nocedal, SIOPT 2011
  - Byrd, Chin, Nocedal & Wu, Math Program 2012
  - Bellavia, Krejić & Krklec Jerinkić, IMA JNA 2019
  - Bollapragada, Byrd & Nocedal, IMA JNA 2019
- Stochastic BFGS
  - Byrd, Chin, Neveitt & Nocedal, SIOPT 2011
  - Moktari & Ribeiro, IEEE TSP 2014
  - Byrd, Hansen, Nocedal & Singer, SIOPT 2016
  - Gower, Goldfarb & Richtárik, Proc ICML 2016
  - Moritz, Nishihara & Jordan, Proc MLR 2016

(4) E (1) (1) (2)

# Our family of methods: LSOS

- Line-search Second-Order Stochastic algorithmic framework, where Newton-type and quasi-Newton directions are used
- Almost sure convergence of the sequence of iterates generated by the methods fitting into the LSOS framework and effectiveness in practice
- For finite-sum objective functions (e.g. in machine learning)
  - $\blacktriangleright$  stochastic L-BFGS for Hessian estimates + SAGA-type for gradient estimates + line search
  - almost sure convergence of the sequence of iterates (for state-of-the-art stochastic L-BFGS convergence in expectation of the obj function error)
  - ▶ linear convergence rate and worst-case  $\mathcal{O}(log(\varepsilon^{-1}))$  complexity
  - practical efficiency (comparison with state-of-the-art stochastic optimization methods)

イロト イヨト イヨト

## Outline



#### 2 The LSOS framework

3 Numerical experiments with LSOS

4 Specializing LSOS for finite sums

5 Numerical experiments with LSOS-BFGS



イロト イヨト イヨト イヨ

#### Sketch of SOS method

- 1: given  $x_0 \in \mathbb{R}^n$  and  $\{\alpha_k\} \subset \mathbb{R}_+$
- 2: for  $k = 0, 1, 2, \dots$  do
- 3: compute  $d_k \in \mathbb{R}^n$
- 4: set  $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$
- 5: end for

 $d_k$  specified later

< □ > < □ > < □ > < □ > < □ >

## SOS: Second-Order Stochastic method

#### Sketch of SOS method

- 1: given  $\boldsymbol{x}_0 \in \mathbb{R}^n$  and  $\{\alpha_k\} \subset \mathbb{R}_+$
- 2: for  $k = 0, 1, 2, \dots$  do
- 3: compute  $d_k \in \mathbb{R}^n$
- 4: set  $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$
- 5: end for

 $d_k$  specified later

#### Basic assumptions

- - x<sub>\*</sub> unique solution
  - $\bullet \ \mu I \preceq \nabla^2 \phi(\boldsymbol{x}) \preceq LI$
- Unbiased gradient estimator and bounded variance of gradient errors:

 $\mathbb{E}(\boldsymbol{\varepsilon}_g(\boldsymbol{x})|\mathcal{F}_k) = 0 \text{ and } \mathbb{E}(\|\boldsymbol{\varepsilon}_g(\boldsymbol{x})\|^2|\mathcal{F}_k) \leq M$  $(\mathcal{F}_k = \sigma\text{-algebra generated by } \boldsymbol{x}_0, \boldsymbol{x}_1, \dots, \boldsymbol{x}_k)$ 

イロト イヨト イヨト

#### Basic assumptions on the search directions

#### **Deterministic case:**

#### $c_i > 0$ constants

Sufficient" descent direction:

$$abla \phi(oldsymbol{x}_k)^{ op} oldsymbol{d}_k \leq -c_2 \left\| 
abla \phi(oldsymbol{x}_k) 
ight\|^2$$

Oirection norm bounded by gradient:

 $\|\boldsymbol{d}_k\| \leq c_3 \|
abla \phi(\boldsymbol{x}_k)\|$ 

イロト イヨト イヨト イヨト

#### Basic assumptions on the search directions

#### Stochastic case:

#### $c_i > 0$ constants

Over the second direction allowed:

$$abla \phi(oldsymbol{x}_k)^{ op} \mathbb{E}\left(oldsymbol{d}_k | \mathcal{F}_k
ight) \leq c_1 \delta_k - c_2 \left\|
abla \phi(oldsymbol{x}_k)
ight\|^2, \quad \delta_k > 0, \quad \sum_k lpha_k \delta_k < \infty$$

Oirection norm bounded by noisy gradient:

 $\| \boldsymbol{d}_k \| \le c_3 \| \boldsymbol{g}(\boldsymbol{x}_k) \|$  a.s.

イロト イポト イヨト イヨー

#### Basic assumptions on the search directions

#### Stochastic case:

#### $c_i > 0$ constants

Over the second direction allowed:

$$abla \phi(oldsymbol{x}_k)^{ op} \mathbb{E}\left(oldsymbol{d}_k | \mathcal{F}_k
ight) \leq c_1 \delta_k - c_2 \left\| 
abla \phi(oldsymbol{x}_k) 
ight\|^2, \quad \delta_k > 0, \quad \sum_k lpha_k \delta_k < \infty$$

Oirection norm bounded by noisy gradient:

 $\|d_k\| \le c_3 \|g(x_k)\|$  a.s.

#### Theorem

Under the previous assumptions, the sequence  $\{x_k\}$  converges to  $x_*$  a.s.

### Search directions using second-order information

#### Further (reasonable) assumptions

- **(**) Positive definite and bounded approximate Hessians:  $\mu I \preceq B(x) \preceq LI$
- Mutually independent noise terms  $\varepsilon_f(x), \varepsilon_g(x)$  and  $\varepsilon_B(x)$  (to be relaxed for finite-sum problems)

## Search directions using second-order information

#### Further (reasonable) assumptions

- **(**) Positive definite and bounded approximate Hessians:  $\mu I \preceq B(x) \preceq LI$
- Mutually independent noise terms  $\varepsilon_f(x), \varepsilon_g(x)$  and  $\varepsilon_B(x)$  (to be relaxed for finite-sum problems)

Possible directions guaranteeing convergence:

Newton directions:

$$B(\boldsymbol{x}_k)\boldsymbol{d}_k = -\boldsymbol{g}(\boldsymbol{x}_k)$$

• "Inexact" Newton directions:

 $\|B(\boldsymbol{x}_k)\boldsymbol{d}_k + \boldsymbol{g}(\boldsymbol{x}_k)\| \le \delta_k \gamma_k$ 

 $\gamma_k$  random variable with bounded variance

| M. Viola (V:anvitelli) | Viola (V:anvitelli) |
|------------------------|---------------------|
|------------------------|---------------------|

イロト イポト イヨト イヨー

### Search directions using second-order information

#### Further (reasonable) assumptions

- **(**) Positive definite and bounded approximate Hessians:  $\mu I \preceq B(x) \preceq LI$
- Mutually independent noise terms  $\varepsilon_f(x), \varepsilon_g(x)$  and  $\varepsilon_B(x)$  (to be relaxed for finite-sum problems)

Possible directions guaranteeing convergence:

Newton directions:

$$B(\boldsymbol{x}_k)\boldsymbol{d}_k = -\boldsymbol{g}(\boldsymbol{x}_k)$$

• "Inexact" Newton directions:

 $\|B(\boldsymbol{x}_k)\boldsymbol{d}_k + \boldsymbol{g}(\boldsymbol{x}_k)\| \le \delta_k(\omega_1\eta_k + \omega_2\|\boldsymbol{g}(\boldsymbol{x}_k)\|)$ 

 $\omega_1,\omega_2\geq 0$  constant,  $\eta_k$  random variable with bounded variance

イロト イヨト イヨト

## LSOS: Line-search SOS

- A harmonic step-length sequence  $(\sum_k \alpha_k = \infty, \sum_k \alpha_k^2 < \infty)$  may make the algorithm slow (the steplength becomes too small soon)
- Tuning is necessary to ensure reasonable results; if the steplengths are not small enough the algorithm may diverge

< □ > < □ > < □ > < □ > < □ >

## LSOS: Line-search SOS

• A harmonic step-length sequence  $(\sum_k \alpha_k = \infty, \sum_k \alpha_k^2 < \infty)$  may make the algorithm slow (the steplength becomes too small soon)

• Tuning is necessary to ensure reasonable results; if the steplengths are not small enough the algorithm may diverge

**IDEA:** start with line search and move to harmonic step lengths only if the line search produces small step lengths

< □ > < 同 > < 回 > < 回 >

## LSOS: Line-search SOS

• A harmonic step-length sequence  $(\sum_k \alpha_k = \infty, \sum_k \alpha_k^2 < \infty)$  may make the algorithm slow (the steplength becomes too small soon)

• Tuning is necessary to ensure reasonable results; if the steplengths are not small enough the algorithm may diverge

**IDEA:** start with line search and move to harmonic step lengths only if the line search produces small step lengths

• At each step the direction is not guaranteed to be a descent direction for  $\phi(\pmb{x})$ 

**IDEA:** use nonmonotone line search

イロト イヨト イヨト

Dec 15 2020

12/32

# LSOS: Line-search SOS (cont'd)

#### LSOS algorithm

- 1: given  $\boldsymbol{x}_0 \in \mathbb{R}^n$ ,  $\eta \in (0, 1)$ ,  $t_{\min} > 0$  and  $\{\alpha_k\}, \{\delta_k\}, \{\zeta_k\} \subset \mathbb{R}_+$
- 2: set LSphase = active
- 3: for  $k = 0, 1, 2, \dots$  do
- 4: compute a search direction  $d_k$  such that

 $\|B(\boldsymbol{x}_k)\boldsymbol{d}_k + \boldsymbol{g}(\boldsymbol{x}_k)\| \le \delta_k \|\boldsymbol{g}(\boldsymbol{x}_k)\|$ 

10: end for

イロト イヨト イヨト イヨー

13/32

Dec 15, 2020

# LSOS: Line-search SOS (cont'd)

#### LSOS algorithm

- 1: given  $\boldsymbol{x}_0 \in \mathbb{R}^n$ ,  $\eta \in (0, 1)$ ,  $t_{\min} > 0$  and  $\{\alpha_k\}, \{\delta_k\}, \{\zeta_k\} \subset \mathbb{R}_+$
- 2: set LSphase = *active*
- 3: for  $k = 0, 1, 2, \dots$  do
- 4: compute a search direction  $d_k$  such that

 $\|B(\boldsymbol{x}_k)\boldsymbol{d}_k + \boldsymbol{g}(\boldsymbol{x}_k)\| \le \delta_k \|\boldsymbol{g}(\boldsymbol{x}_k)\|$ 

5: find a step length  $t_k$  as follows:

6: **if** LSphase = active then find  $t_k$  that satisfies  $f(\boldsymbol{x}_k + t_k \boldsymbol{d}_k) \leq f(\boldsymbol{x}_k) + \eta t_k \boldsymbol{g}(\boldsymbol{x}_k)^\top \boldsymbol{d}_k + \zeta_k$ 

7: **if** 
$$t_k < t_{\min}$$
 **then** set LSphase = *inactive*

8: **if** LSphase = *inactive* **then** set 
$$t_k = \alpha_k$$

9: set 
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + t_k \boldsymbol{d}_k$$

10: end for

イロト イポト イヨト イヨー

#### Theorem

Assume that  $\{\zeta_k\}$  is summable and the objective function estimator f is unbiased, i.e.

$$\mathbb{E}(\varepsilon_f(\boldsymbol{x})|\mathcal{F}_k) = 0.$$

If the sequence  $\{x_k\}$  generated by LSOS is bounded, then  $x_k o x_*$  a.s..

< □ > < □ > < □ > < □ > < □ >

## Outline



#### 2 The LSOS framework

#### Output: Section 2015 Section

4 Specializing LSOS for finite sums

5 Numerical experiments with LSOS-BFGS



イロト イヨト イヨト イヨ

# Convex random problems (type 1)

$$\phi(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i \left( e^{x_i} - x_i \right) + \left( \boldsymbol{x} - \boldsymbol{1} \right)^{\mathsf{T}} A(\boldsymbol{x} - \boldsymbol{1})$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ Dec 15, 2020 16/32

# Convex random problems (type 1)

$$\phi(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i \left( e^{x_i} - x_i \right) + \left( \boldsymbol{x} - \boldsymbol{1} \right)^{\top} A(\boldsymbol{x} - \boldsymbol{1})$$

- $\lambda_i$ 's logarithmically spaced between 1 and  $\kappa$
- $A \in \mathbb{R}^{n \times n}$  spd with eigenvalues  $\lambda_i$  (generated by sprandsym)
- $n = 10^3$ ,  $\kappa = 10^2, 10^3, 10^4$
- $\varepsilon_f(\boldsymbol{x}) \sim \mathcal{N}(0,\sigma)$ ,  $(\varepsilon_g(\boldsymbol{x}))_i \sim \mathcal{N}(0,\sigma)$  and  $\varepsilon_B(\boldsymbol{x}) = \operatorname{diag}(\mu_1, \dots, \mu_n)$ ,  $\mu_i \sim \mathcal{N}(0,\sigma)$
- $\sigma = 0.1\% \kappa, 0.5\% \kappa, 1\% \kappa$
- x<sub>\*</sub> computed with high accuracy using deterministic L-BFGS (M. Schmidt, https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html)

イロト イヨト イヨト

# Convex random problems (type 1)

$$\phi(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i \left( e^{x_i} - x_i \right) + (\boldsymbol{x} - \boldsymbol{1})^{\top} A(\boldsymbol{x} - \boldsymbol{1})$$

- $\lambda_i$ 's logarithmically spaced between 1 and  $\kappa$
- $A \in \mathbb{R}^{n \times n}$  spd with eigenvalues  $\lambda_i$  (generated by sprandsym)
- $n = 10^3$ ,  $\kappa = 10^2, 10^3, 10^4$
- $\varepsilon_f(\boldsymbol{x}) \sim \mathcal{N}(0,\sigma)$ ,  $(\varepsilon_g(\boldsymbol{x}))_i \sim \mathcal{N}(0,\sigma)$  and  $\varepsilon_B(\boldsymbol{x}) = \operatorname{diag}(\mu_1, \dots, \mu_n)$ ,  $\mu_i \sim \mathcal{N}(0,\sigma)$
- $\sigma = 0.1\% \kappa, 0.5\% \kappa, 1\% \kappa$
- x<sub>\*</sub> computed with high accuracy using deterministic L-BFGS (M. Schmidt, https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html)

Comparison of

- LSOS with exact solution of noisy Newton systems
- SOS with pre-defined step length  $\alpha_k = \frac{1}{\|\mathbf{d}_0\|} \frac{T}{T+k}, \ T = 10^6$
- Stochastic Gradient Descent (SGD) with step length  $\alpha_k$

A D A A B A A B A A B A

## Convex random problems (type 1): obj fun error vs time



M. Viola (V:anvitelli)

LSOS

Dec 15, 2020 17 / 32

# Convex random problems (type 2)

$$\begin{split} \phi(\boldsymbol{x}) &= \sum_{i=1}^{n} \lambda_{i} \left( e^{x_{i}} - x_{i} \right) + (\boldsymbol{x} - \boldsymbol{1})^{\top} A(\boldsymbol{x} - \boldsymbol{1}) \\ A &= V D V^{T}, \ D = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n}), \ V = (I - 2 \boldsymbol{v}_{3} \boldsymbol{v}_{3}^{T}) (I - 2 \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{T}) (I - 2 \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}), \\ \boldsymbol{v}_{j} \text{ random}, \ \|\boldsymbol{v}_{j}\| = 1 \end{split}$$

- $n = 2 \cdot 10^4$ ,  $\kappa = 10^2, 10^3, 10^4$
- $\sigma = 0.1\% \kappa, 0.5\% \kappa, 1\% \kappa$
- Hessian in factorized form ⇒ (noisy) Newton system must be solved inexactly (e.g., by CG)

イロト イヨト イヨト イヨト

# Convex random problems (type 2)

$$\phi(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i (e^{x_i} - x_i) + (\boldsymbol{x} - \boldsymbol{1})^{\top} A(\boldsymbol{x} - \boldsymbol{1})$$
$$A = V D V^T, \quad D = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \quad V = (I - 2 \boldsymbol{v}_3 \boldsymbol{v}_3^T)(I - 2 \boldsymbol{v}_2 \boldsymbol{v}_2^T)(I - 2 \boldsymbol{v}_1 \boldsymbol{v}_1^T),$$
$$\boldsymbol{v}_j \text{ random}, \quad \|\boldsymbol{v}_j\| = 1$$

- $n = 2 \cdot 10^4$ ,  $\kappa = 10^2, 10^3, 10^4$
- $\sigma = 0.1\% \kappa, 0.5\% \kappa, 1\% \kappa$
- Hessian in factorized form ⇒ (noisy) Newton system must be solved inexactly (e.g., by CG)

#### Comparison of

- LSOS ("exact" solution of noisy Newton systems CG tolerance 1e-6)
- LSOS-I (inexact solution of noisy Newton systems decreasing tolerance sequence)
- SGD-LS (SGD with line search)

イロト イヨト イヨト

## Convex random problems (type 2): obj fun error vs time



M. Viola (V:anvitelli)

LSOS

Dec 15, 2020 19 / 32

## Outline



- 2 The LSOS framework
- 3 Numerical experiments with LSOS
- 4 Specializing LSOS for finite sums
- 5 Numerical experiments with LSOS-BFGS
- 6 Conclusions and future work

イロト イヨト イヨト イヨ

#### The finite sum case

$$\phi(oldsymbol{x}) = rac{1}{N}\sum_{i=1}^N \phi_i(oldsymbol{x})$$

 $\phi_i(\pmb{x})\in \mathcal{C}^2$   $\overline{\mu} ext{-strongly convex},$  with Lipschitz-continuous gradient with constant  $\overline{L}$ 

イロト イヨト イヨト イヨー

#### The finite sum case

$$\phi(oldsymbol{x}) = rac{1}{N}\sum_{i=1}^N \phi_i(oldsymbol{x})$$

 $\phi_i(m{x})\in \mathcal{C}^2$   $\overline{\mu} ext{-strongly convex},$  with Lipschitz-continuous gradient with constant  $\overline{L}$ 

Subsampling: at each iter k, a sample  $\mathcal{N}_k$  of size  $N_k \ll N$  is chosen randomly and uniformly from  $\mathcal{N} = \{1, ..., N\}$ :

$$f_{\mathcal{N}_k}(\boldsymbol{x}) = \frac{1}{N_k} \sum_{i \in \mathcal{N}_k} \phi_i(\boldsymbol{x}), \quad \boldsymbol{g}_{\mathcal{N}_k}(\boldsymbol{x}) = \frac{1}{N_k} \sum_{i \in \mathcal{N}_k} \nabla \phi_i(\boldsymbol{x}),$$
$$B_{\mathcal{N}_k}(\boldsymbol{x}) = \frac{1}{N_k} \sum_{i \in \mathcal{N}_k} \nabla^2 \phi_i(\boldsymbol{x})$$

(unbiased estimators of  $\phi({m x}),\, 
abla \phi({m x})$  and  $abla^2 \phi({m x}))$ 

イロト イヨト イヨト イヨト
#### Stochastic variant of L-BFGS

Hessian approximation from stochastic variant of Limited-memory BFGS (L-BFGS) [Byrd, Hansen, Nocedal & Singer, SIOPT 2016]

 $H_k$  defined by applying *m* BFGS updates to an initial matrix, using the *m* most recent correction pairs  $(s_j, y_j)$  obtained averaging iterates over *r* steps (j = k/r):

$$egin{aligned} m{s}_j &= m{w}_j - m{w}_{j-1}, \quad m{y}_j = B_{\mathcal{T}_j}(m{w}_j) \, m{s}_j, \quad \mathcal{T}_j \subset \{1, \dots, N\} \ m{w}_j &= rac{1}{r} \sum_{i=k-r+1}^k m{x}_i, \quad m{w}_{j-1} = rac{1}{r} \sum_{i=k-2r+1}^{k-r} m{x}_i \end{aligned}$$

M. Viola (V:anvitelli)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ Dec 15, 2020 22/32

## Mini-batch SAGA

#### Subsampled gradient estimate by a a mini-batch variant of SAGA

[Defazio, Bach & Lacoste-Julien, NIPS 2014; Gower, Richtárik & Bach, Math Prog 2020]

$$\boldsymbol{g}_{\mathcal{N}_{k}}^{\text{SAGA}}(\boldsymbol{x}_{k}) = \frac{1}{N_{k}} \sum_{i \in \mathcal{N}_{k}} \left( \nabla \phi_{i}(\boldsymbol{x}_{k}) - J_{k}^{(i)} \right) + \frac{1}{N} \sum_{r=1}^{N} J_{k}^{(r)}$$
$$J_{k+1}^{(i)} = \begin{cases} J_{k}^{(i)} & \text{if } i \notin \mathcal{N}_{k} \\ \nabla \phi_{i}(\boldsymbol{x}_{k+1}) & \text{if } i \in \mathcal{N}_{k} \end{cases}, \quad J_{0}^{(i)} = \nabla \phi_{i}(\boldsymbol{x}_{0})$$

 $\{1,\ldots,N\}$  partitioned into a fixed number  $n_b$  of random mini-batches, which are used in order

Advantage of SAGA over SVRG: full gradient computation only at the beginning of the algorithm (SVRG: full gradient computation each  $n_b$  iterations)

| M. Viola (V:anvitelli) | M. 1 | Viola ( | (V:anvitel | li) |
|------------------------|------|---------|------------|-----|
|------------------------|------|---------|------------|-----|

イロト イヨト イヨト イヨト

### LSOS-BFGS: Finite-Sum LSOS with L-BFGS

#### LSOS-BFGS

- 1: given  $\boldsymbol{x}_0 \in \mathbb{R}^n, \ m, r \in \mathbb{N}, \ \eta, \vartheta \in (0, 1)$
- 2: for k = 0, 1, 2, ... do
- 3: compute a partition  $\{\mathcal{K}_0, \mathcal{K}_1, \dots, \mathcal{K}_{n_b-1}\}$  of  $\{1, \dots, N\}$

#### 13: end for

#### LSOS-BFGS: Finite-Sum LSOS with L-BFGS

#### LSOS-BFGS

- 1: given  $\boldsymbol{x}_0 \in \mathbb{R}^n, \ m, r \in \mathbb{N}, \ \eta, \vartheta \in (0, 1)$
- 2: for  $k = 0, 1, 2, \dots$  do
- 3: compute a partition  $\{\mathcal{K}_0, \mathcal{K}_1, \dots, \mathcal{K}_{n_b-1}\}$  of  $\{1, \dots, N\}$
- 4: for  $s = 0, ..., n_b 1$  do
- 5: choose  $\mathcal{N}_k = \mathcal{K}_s$  and compute  $g(x_k) = g_{\mathcal{N}_k}^{\mathsf{SAGA}}(x_k)$
- 6: compute  $d_k = -H_k g(x_k)$  with  $H_k$  defined by stochastic L-BFGS

#### 13: end for

< □ > < □ > < □ > < □ > < □ >

# LSOS-BFGS: Finite-Sum LSOS with L-BFGS

#### LSOS-BFGS

- 1: given  $x_0 \in \mathbb{R}^n, m, r \in \mathbb{N}, \eta, \vartheta \in (0, 1)$
- 2: for k = 0, 1, 2, ... do
- 3: compute a partition  $\{\mathcal{K}_0, \mathcal{K}_1, \dots, \mathcal{K}_{n_b-1}\}$  of  $\{1, \dots, N\}$

4: for 
$$s = 0, ..., n_b - 1$$
 do

- 5: choose  $\mathcal{N}_k = \mathcal{K}_s$  and compute  $g(x_k) = g_{\mathcal{N}_k}^{\mathsf{SAGA}}(x_k)$
- 6: compute  $d_k = -H_k g(x_k)$  with  $H_k$  defined by stochastic L-BFGS
- 7: find a step length  $t_k$  such that

$$f_{\mathcal{N}_k}(\boldsymbol{x}_k + t_k \boldsymbol{d}_k) \leq f_{\mathcal{N}_k}(\boldsymbol{x}_k) + \eta t_k \, \boldsymbol{g}(x_k)^{ op} \boldsymbol{d}_k + artheta^k$$

8: set 
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + t_k \boldsymbol{d}_k;$$

9: if mod 
$$(k, r) = 0$$
 and  $k \ge 2r$  then

- 10: update the L-BFGS correction pairs
- 11: end if
- 12: end for
- 13: end for

# FS-LSOS: convergence

#### Theorem (convergence)

Assume  $\{t_k\}$  is bounded away from zero. Then  $\{x_k\}$  converges a.s. to the unique minimizer of  $\phi$ .

< □ > < □ > < □ > < □ > < □ >

# FS-LSOS: convergence

#### Theorem (convergence)

Assume  $\{t_k\}$  is bounded away from zero. Then  $\{x_k\}$  converges a.s. to the unique minimizer of  $\phi$ .

#### Theorem (convergence rate)

Let  $\{t_k\}$  be bounded away from zero. Then there exist  $\rho \in (0,1)$  and C>0 such that

$$\mathbb{E}(\phi(\boldsymbol{x}_k) - \phi(\boldsymbol{x}_*)) \le C\rho^k.$$

#### Theorem (complexity bound)

In order to achieve  $\mathbb{E}(\phi(x_k) - \phi(x_*)) \le \varepsilon$  for some  $\varepsilon \in (0, e^{-1})$ , LSOS-FS takes at most

$$k_{\max} = \left| \frac{|log(C)| + 1}{|log(\rho)|} log(\varepsilon^{-1}) \right| = \mathcal{O}\left( \log(\varepsilon^{-1}) \right)$$

with  $\rho \in (0,1)$  and C > 0.

イロト イヨト イヨト イヨ

## Outline



2 The LSOS framework

3 Numerical experiments with LSOS

4 Specializing LSOS for finite sums





イロト イヨト イヨト イヨ

#### Linear classification problems

#### Training a linear classifier by minimizing the $\ell_2$ -regularized logistic regression

Given N pairs  $(a_i, b_i)$ ,  $a_i \in \mathbb{R}^n$  training point,  $b_i \in \{-1, 1\}$  corresponding label, a hyperplane approximately separating the two classes can be found by minimizing

$$\phi(oldsymbol{x}) = rac{1}{N}\sum_{i=1}^N \phi_i(oldsymbol{x}), \hspace{1em} ext{with} \hspace{1em} \phi_i(oldsymbol{x}) = \log\left(1+e^{-b_i \hspace{1em}oldsymbol{x}}_i^ op oldsymbol{x}
ight) + rac{\mu}{2} \|oldsymbol{x}\|^2, \hspace{1em} \mu > 0$$

#### Linear classification problems

#### Training a linear classifier by minimizing the $\ell_2$ -regularized logistic regression

Given N pairs  $(a_i, b_i)$ ,  $a_i \in \mathbb{R}^n$  training point,  $b_i \in \{-1, 1\}$  corresponding label, a hyperplane approximately separating the two classes can be found by minimizing

$$\phi(\boldsymbol{x}) = \frac{1}{N} \sum_{i=1}^{N} \phi_i(\boldsymbol{x}), \text{ with } \phi_i(\boldsymbol{x}) = \log\left(1 + e^{-b_i \,\boldsymbol{a}_i^\top \boldsymbol{x}}\right) + \frac{\mu}{2} \|\boldsymbol{x}\|^2, \ \mu > 0$$
Note that

$$\nabla \phi_i(\boldsymbol{x}) = \frac{1 - z_i(\boldsymbol{x})}{z_i(\boldsymbol{x})} b_i \, \boldsymbol{a}_i + \mu \boldsymbol{x}, \ \nabla^2 \phi_i(\boldsymbol{x}) = \frac{z_i(\boldsymbol{x}) - 1}{z_i^2(\boldsymbol{x})} \boldsymbol{a}_i \boldsymbol{a}_i^\top + \mu I, \ z_i(\boldsymbol{x}) = 1 + e^{-b_i \, \boldsymbol{a}_i^\top}$$

 $\phi_i \; \mu \text{-strongly convex}, \quad \mu I \preceq \nabla^2 \phi_i(\boldsymbol{x}) \preceq LI, \quad L = \mu + \max_{i=1,\dots,N} \|a_i\|^2$ 

< □ > < □ > < □ > < □ > < □ >

## Linear classification problems (cont'd)

LIBSVM datasets (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/)

| name     | N      | n     |
|----------|--------|-------|
| covtype  | 406709 | 54    |
| w8a      | 49749  | 300   |
| epsilon  | 400000 | 2000  |
| gisette  | 6000   | 5000  |
| real-sim | 50617  | 20958 |
| rcv1     | 20242  | 47236 |

NOTE:  $\mu = 1/N$ , sample size =  $\left\lceil \sqrt{N} \right\rceil$ 

イロト イ団ト イヨト イヨ

# Linear classification problems (cont'd)

LIBSVM datasets (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/)

| name     | N      | n     |
|----------|--------|-------|
| covtype  | 406709 | 54    |
| w8a      | 49749  | 300   |
| epsilon  | 400000 | 2000  |
| gisette  | 6000   | 5000  |
| real-sim | 50617  | 20958 |
| rcv1     | 20242  | 47236 |

NOTE: 
$$\mu = 1/N$$
, sample size =  $\left\lceil \sqrt{N} \right\rceil$ 

Comparison between

- LSOS-BFGS, with m = 10 and r = 5
- GGR [Gower, Goldfarb & Richtárik, Proc ICML 2016]
- MNJ [Moritz, Nishihara & Jordan, Proc MLR 2016]
- Mini-batch variant of SAGA, with the same line search as LSOS-BFGS

< □ > < 同 > < 回 > < 回 >

### Classification problems: obj fun error vs time



## Classification problems: obj fun error vs time



## Outline



- 2 The LSOS framework
- 3 Numerical experiments with LSOS
- 4 Specializing LSOS for finite sums
- 5 Numerical experiments with LSOS-BFGS
- 6 Conclusions and future work

イロト イヨト イヨト イヨ

# Conclusions and future work

- We introduced LSOS a flexible second-order framework for optimization in noisy environments
- Almost sure convergence holds for the sequences generated by all the LSOS variants
- For finite-sum problems, we proved linear convergence rate on the obj. fun. error and worst-case complexity bound  $\mathcal{O}(\log(\varepsilon^{-1}))$  for LSOS with stochastic L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are used

< □ > < 同 > < 回 > < 回 >

# Conclusions and future work

- We introduced LSOS a flexible second-order framework for optimization in noisy environments
- Almost sure convergence holds for the sequences generated by all the LSOS variants
- For finite-sum problems, we proved linear convergence rate on the obj. fun. error and worst-case complexity bound  $\mathcal{O}(\log(\varepsilon^{-1}))$  for LSOS with stochastic L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are used
- Numerical experiments confirm that line-search techniques in second-order stochastic methods yield a significant improvement over predefined step-length sequences
- For finite sum problems LSOS-BFGS highly competitive with state-of-the art second-order stochastic optimization methods

# Conclusions and future work

- We introduced LSOS a flexible second-order framework for optimization in noisy environments
- Almost sure convergence holds for the sequences generated by all the LSOS variants
- For finite-sum problems, we proved linear convergence rate on the obj. fun. error and worst-case complexity bound  $\mathcal{O}(\log(\varepsilon^{-1}))$  for LSOS with stochastic L-BFGS Hessian and any Lipschitz-continuous unbiased gradient estimates are used
- Numerical experiments confirm that line-search techniques in second-order stochastic methods yield a significant improvement over predefined step-length sequences
- For finite sum problems LSOS-BFGS highly competitive with state-of-the art second-order stochastic optimization methods
- What's next? Possible extension to problems not satisfying the strong convexity assumption and to constrained problems

# Thanks for the attention! Any questions?

#### Do you want to know more?

D. di Serafino, N. Krejić, N. Krklec Jerinkić, M. Viola, *LSOS: Line-search Second-Order Stochastic optimization methods*, submitted (also available on ArXiv and Optimization Online)

イロト イポト イヨト イヨー